3/31/25 L1: Unsiened BinARyY, BinaRY, C Basics

SCHEDULE:
M: 1ectore
T: rec, due € night

W: LAB (OON'T BE LATE)
S: onine ex, I2b/post I2b checkoffs dve

FINAL: M2y 7, 7:30-9:30

WHAT 1S INFO?
-2nything Providng 2nswev o question of Sowme kind

- BIT: one YIN 2mount of info (represented 2s 1/0)

-moreg info = more b/ts
-8 bits? 2"sm - 28:=25¢

-BYTE: grouping of 8 bits. 0ooococoo through LI
Ex: 234l options? loszlzsm)zu.m bets

ANALOG VS. DIGITAL:

ANALOG: Mmany veitage valve

“Ex: 0»10V, 0.01 Step-single V can be log, (1000) 1 9.96 bits of infe

-susceptble o noise (ex: 2.03 couid be 1.68 + o.03Vv)

DIGITAL: lim:ted voltage values
“EX: OV ovr IOV - log, (2)=1 bt of info
-can deal w/ noise (above cBrtain ami= IOV, below = OV)
- O:Sh{er consSiraints

-noiseé margins
VALID INPUT REPRESENTATIONS,___

—

Undefined | ‘ ! Vall',d
‘ ‘ volts

—_—— ~ -
\\ NOISE MARGINS ~ /
VALID OUTPUT REPRESENTATIONS

SCALING: ewncoding + ints
-each bit assigned a2 weight
N-t

@ V=Z Zib:
isO
-smaliest: O

'lafse$|': ZN-I Base 2

111 & CBTrY
1110

EX: p3ul revere

©® €uil -by land
O haif - by se2
® off - not come

@0 Iand
@O gsea
O O net come

& easier to kvow
w! Fogq!

1
+ 111
BINARY: ADD 8 SOBTRALT 10101
-jost ke base 10 i1
1110
- 111
Mo 0: 0111
OVERFLOW:
-computers have Fixed # bits, bur may want to do more rigerous calculations
111
1110

Overflow,
+0—111 actual result is
10101 21 mod 24 =5

only returns this - Can calcolate from here

Ex. encede 21 uvsing & bts

START: 21
Sdoes 25 (32) fit 217 X 2 ©
24 (le)Y > v z2i-16=S$ binary
L |
23 (g) et S?2ax >0 AnSwWER: ObOIOIOI
22 (4) FHS?2 > V> 5.qs1 0/)’”\
16 Ouo
2' fH 1?2 x

2° ? v

C: THE LANGUAGE

- more unsafe

-older & wmore low-level
*K&R C book

PNTHONA 1 C ¢ ‘closer +o the metal”
.interpreted (Slower) |.compiler
‘e type declaraton| -Faster execvhon (fyp'cally)
‘No pointers -type declara+on
- avte memory manag|: pointers
. Manual mem. manage.
~have to tell explicitiy

CODE:

//comments are with "//"
//This is our "entry point" function called app_main...start here
void app_main(){ //gotta use curly braces (and ; at end of most lines!)
int x; //declare a variable of type int without defining it
x =11; //assign 11 to
inty = 15; //declare and defie a variable of type int
intz = x+y;
printf("the value of x is %d\n", x); //print using C-string format
printf(“the value of y is %d\n", y);
printf(“the value of z is %d\n", z);
// what did this "make" in memory?

}

At the end of our code, our computer memory looked

Ilke th|S. Address: Value:
0x3fc93f48: 0x00000000
0x3fc93f4c: 0x420000e4
0x3fc93f50: 0x00000000
0x3fc93f54: 0x0000001la ¢~ 2 =» la=16+10 =26
0x3fc93f58: 0x0000000f €= 4 (F=1S)
0x3fc93f5c: 0x0000000b &~ v3r X in memory (u
0x3fc93f60: 0x00000000
0x3fc93f64: 0x00000000
0x3fc93f68: 0x00000000
0x3fc93fée: 0x4201652c¢
Svyn TAX:

-) C end of all lines

. Spacing doesn’t matter

- § deuneates code cwhunks

MEMORY: |arge chunk of @lectvica) Storage Hexadecimal - base 16
-stored digitally (O3 iIs)
c low 4o b.'gh+ 4 . o (base 2% 0000 - 0 1000 - 8
- Db @ star} +o indicate binar 25
'ME:(AD::MAL: Osx, U b-'narss-) 1 hex , base 16 8823 B % 182(1) B 2
IT. - -
g 21151059 58 57 56 55 54 53 52 51 50 0011 - 3 1011 - B
emarvy:(01111111111 l0ol1lolololo 0100 - 4 1100 - C
0101 - 5 1101 - D
‘ Y a Y 2 Y ’ 0110 - 6 1110 - E
HEx: 7 D 0 0111 - 7 1111 - F

0b011111010000 = 0x7DO0

Preface hexadecimal numbers with 0x

-underiging bits are st the sawme!

@

DrGANIZATION:

‘Smallest accessible unt of mem = byte (8 bits)

‘our system: 32-bik SgStem = 4 byie weovds

‘U byte words wl/ 2addresses
-each wordd 32 bits data
-each addy —"
‘thars only require 1 byte in memory
- float: H bytes
- int: 4 bytes

TVYPES

PRIN T

ddress: Value:
0" Byte 3 Byte 2 Byte 1 Byte 0
4" Byte 7 Byte 6 Byte 5 Byte 4
8" Byte 11 | Byte 10 | Byte 9 Byte 8
"12” Byte 15 | Byte 14 | Byte 13 | Byte 12
“16” Byte 19 | Byte 18 | Byte 17 | Byte 16

w o

ad nauseum...

‘Specify width: Pr:n{»(-'(“°lo3&, olobd\n", a,b); &2 cols 8 6 cols of space

‘olof prints flodt , ole d-decimal, oloC = Char

int app_main (){
printf ("%5d\n", 123); /* Prints " 123" */
printf ("%*d\n", 5, 123); /* Prints " 123" */
printf ("%+05d\n", 123); /* Prints "+0123" */
printf ("%x\n", 123); /* Prints "7b" */
printf ("%#x\n", 123); /* Prints "0x7b" */
printf ("%#X\n", 123); /* Prints "0X7B" */
printf ("%-10.2f\n", 12.3); /* Prints "12.30" */
printf ("%10.2f\n", 12.3); /* Prints " 12.30" */
printf ("%lu\n", 123); /* Prints "123" */
printf ("%s\n", "Testing"); /* Prints "Testing" */
printf ("%c\n", 'A"); /* Prints "A" */

}

-careful not+ +o represent floatr as int!
IMPORTS:

Hinciude <stdint.h> ¢« more defs
#include d(stdio.Wd printf

L

c

if (a<b)
statement(s);

Jelseif (a==b) {
statement(s);

-loeps while (n > 1) { statement(s); }

-conditiondls

}else {

stement) for (i=1;i<10;i++) { statement(s);
)
-logical ops J }
»88.1n,!
* 3ny wnongero valoul

A =XOR
S v = NOT

's ctons;deved T (1)

- bitwise ops .
-sShf+ right by iz divide by 2°
“SWF+ 1BFE by (= wolkply by 2°

EX: %z0b000OIOI SWFI by 3 (x<3) Iefd
ooolel (3
©0Ii1010 10
oloto o 20
101000 4o
x bitwise AND y X bitwise OR y X bitwise XOR y bitwise NOT x
x&y x|y XAy ~X
Ex:
00101 00101 00101 00101
00110 00110 00110
00100 00111 00011 11010

x << y; //shift x left by y bits
x >>y; //shift x right by vy bits
x & y; //bitwise and x with y
X | y; //bitwise or x with y
~x; //bitwise invert x

x Ny; //bitwise xor x with y

int summ(int a, int b) {
return a+ b;
}
intx,y,z
x=1;
y=2
‘- Fonctions 27 summi(x, y);

‘- pointer 3data type that ‘points” o other data
-stores reference mem. addy

- c2an recall f needed (dereference)

" dangerous bout Freeing

EX:
void app_main(){
intx = 5; //make int called x
int * ptr_to_x; //make int pointer called ptr_to_x
ptr_to_x = &x; //give ptr_to_x the address of x
printf("x is %d\n”, x);
printf("ptr_to_x's value is %d\n" ,ptr_to_x);
printf("The value ptr_to_x points at is %d\n", *ptr_to_x);

}

= This I:’fi/ntsz//The value of "x”
X iS 5 " ”
ptr_to_x's value is 1070153564 «—_ The value of "ptr_to_x

Which is the address of x
\

The value contained in the
memory spot that ptr_x points to
(which should be x)

The value ptr_to_x points atis 5

Address: Value:
0x3fc93f58: 0x42016554
0x3fc93f5c: 0x00000005 €= %
0x3fc93f60: 0x3fc93f5¢ €= ptr- +o. X
0x3fc93f64: 0x00000000
0x3fc93f68: 0x00000000
0x3fc93féc: 0x42016554

*®

in C*
- moultiply int qz=a®*p;

-deciare pointer tuype int * 2; ¢ declare int pointer named @
-dereferencing * 2 zc; ¢ set val of a2 pts > inta
b=%2, ¢ set int b 1o val 2 pts te
in C*
- and (logre) int q= a8 b:
- reference to / addy int ¥2=2 a0, & ser pointer 2's val +o a's addy

* IMPoRTANT: ® and 8 ace opposites - can cancel out

intx=5; //create x and setto 5
X=6;//setxto6
*(&x) = 6; //same thing as line above

&x == "the address of x”

*(...) == "the value at address ...”

PurpPosE oF PoimTERS:

) point +o a varviable.

- can alter outside woeid

= Can allow you to modify variables in place. For
example, this function has no return type, but does
have an “output” in the form of the pointer z

void add_and_assign(int x, int y, int * z){
//the value of z is a reference (address)

//the value at that address (*z) is now to be x+y:
*7 = x+y;

}

void app_main(){
inta=1;

inth =

intc=0; //starts at 0
add_and_assign(a,b,&c);//give int a, b, and ref to ¢
//this function call will change variable c!
printf("Value of c: %d\n",c); //will print 3

2) refer to memory regions that arew’t 2ssociated wi

variables

“Mmemory- mapped- input - ovtput

-setige+ vals from software 5 hardware, .

MMIO Example...

void app_main(){

int * temp_sensor = 0x30000004; //set pointer to a known address value
int * heater = 0x30000008; //set pointer to a known address value
//The two addresses above come from datasheet of processor!
while(1){//run forever

//check temperature

if (*temp_sensor < 60){ //get value...less than 607

*heater = 1; //set value to 1 (let it warm)

Jelse(
*heater = 0; //set value to O (let it cool)
}
}

}

*

Address: Value: L
0x30000004: v, 0x00000023 —
0x30000008: ,_"0x00000001 —

- -

)

0x3fc93f58: 0x420855;

0x3fc93f5c: 0x300000048x3Fc93f60: —
0x30000008 0x3fc93f64: 0x00000000 w—__

3) point

emp_sensor
Gets access to

__— this value

| —— *heater

Gets access to
this value

temp_sensor

" heater
te 2 grouvplregion of datalvariables

- can use pointer for data qroup & make faster

// in C:

intal6]={3,9,6,1, 7,2}
int x;

x =a[1];

poinier 4“/_\

start of
arvray

int sum(int *a, int len) {
ints=0;
for (int i=0; i<len; i++){
s +=ali];
}
return s;
}

sum(a, 6);

AreAvsS-

‘size of 3array wmust be kuown
dgpe of elements most an

gth of
Ien .

array
(need +o Feil)

e crearon

beé same

EX:

EX:

@ EX:

Ex:
void app_main(){
intx[]={1,2,3,4,5};
//10 long array of ints accessible through ptry
//only four vals specified (rest are unknown)
int y[10] = {10,11,12,13};
printf("%d\n", x[1]); //prints 2
printf("%d\n", *x); //prints 1 same as x[0] or *(x+0)
printf("%d\n", x); //prints 1070153528 (0x3fc93f38 in hex)

printf("%d\n", *(x+2)); //prints 3...same as x[2]

//wait does that mean | could do this???
y[12]=15; //oh god please throw an error] changes
printf("%d\n", x[2]); //prints 15...oh no

}
memory after code:
Address: Value:
0x3fc93fOc: 0x420001ec
0x3fc93f10: 0x0000000a - .
0x3fc93f14: 0x0000000b inty[10]
0x3fc93f18: 0x0000000c
0x3fc93flc: 0x0000000d
0x3fc93f20: 0x00000000
0x3fc93f24: 0x00000000
0x3fc93f28: 0x00000000
0x3fc93f2c: 0x00000000 .
0x3fc93f30: 0x00000000 | int x[]
0x3fc93f34: 0x00000000 |
0x3fc93f38: 0x00000001
0x3fc93f3c: 0x00000002
0x3fc93f40: 0x00000003
0x3fc93f44: 0x00000004
0x3fc93f48: 0x00000005
EXERCISES:
(AL}
OpoI0o
+ DbootoO
opt 00D

2 borrowing 2
0bDI 100 (AWANS borrows Hie base! ex: 2 in binars,
- 0bOOD! | © in hex)
01001
Y 3 =12
Obloo * ObOIl =0blioD

oboloo(

3157231

2 10
Obi1l 2 e 2 —»leis2
*Dhu:o
y /S
—_ O bin ow(o Ob)
oo
ObOI11100 28 ©bioe Dk
ObDOI110000 "“l’?°
ADb1010101 O L2090
10011010 trree

ObOOIOIO ¢<2 = OblOlooo] does NOT wWrap around.
Obl100I0 72 =00N00

SIGNEO » + & - #s

UNSIGNEO > + 8 O #s

!Obloioclo = 1
th's = 0!

(ObooIo -0boOOI -0ObooO!) 88 ObOIOY = O!

printf("%d\n", x+1); //prints 1070153532 (0x3fc93f3cin hex) & 2°'S wmewmory

3rdk element of x!

ends become O when bit-shifting

printf("%d\n", *(x+5)); //prints undefined...same as x[5]...no idea what’s in that memory
printf("%d\n", *(y+10)); //prints 1...because you bled into where x is and x[0] is 1

‘llarqest # bits to represenr the resvlt of multiplging two S bit #s together -» 10 Bor WHY?

0bOOLIcO 8 & ObocoIl = 2 ble # =1 2lways? 0z0?

3 evalwates each digit.

82 evaloates wombers (nowvizevo)

Luriizs]-vrecitation 2
8ur:

‘Fundawmenial unit
cOor |

8yTeE:
-8 bits
N Z‘: 2S6 unﬁ'suwah'ev\s
WoRro:
.232
-8 bytes
NSIGNED (non-wne 8invARY
Vint8_t Sunsigned int — 8 bits +ype

e3ch can represent up to 2N - numbers fo. 2”-']

in binary-> prefix 0Ob

REMAINDER: PowER oF 2:
div rémain
Ex: 13//2 =6 &~ least signi€rcant Ex: 138 + U +1
meitwods oll2 =3 2} 22 2t 5 101
312 =1 - 13=pbNO!I
"IN zz=o0 & most Stsa:".‘czv\‘-
(1eft)
INAR Y (-] [

Ex: Obiool = 24 0.2 +0.2' +2° -9

OPERATIONS®

N Bi
Lob Nary Operagi
Ex: 0600l o 2 bits, vesult would be 000 lons
1000 Bitwise
c
ouloto £© OPeration on Eace o Logica
& (ang ;
obiloo £ @na), | ory, < (o S Oon
—)), A 5 alse
Ex: 10110 (right shifty < (oh SLT%') AnYthing efsq = 1
q0L 100 88 (and), || on), 1 (o)
EX: Dbl 1l LT T %> [Same as pythoy
101 O
1010 Python &
1010
1510 and 75
'oolollo

or \

not \

Ex: ([obiDol | oblco) & Oboon)¢ 3

Ex: ((wobD0OOD_1111)" DbNOO_100)>> 4

Ex: (0bi0D & (Ob 00O ¢=0bui)) == oboO|

Ex: !0blo1 Il ((0bi0O - 0boIl-0bool) & & 0bODI)

HEXADECIMAL:

-base (o

cprefix O

‘1 digit of hex = U digits bin.

@ Ex: wex of 0Ob0OO!1100
review a c
wex

L Ex: Ox20 5 2%16=32

PATA TyePes:

Divisions:

. 'm('e_sg_Ldu‘v.’s ion: intlint

- floating point division: if one or bots i+S operands is float

EX

float x = Aalz > xXx=4.0
e

q

PoOINTERS:

& = a2ddy

*

pointer

MEMORY:

' Memory

Store mformation comammg
Address Sequential nympe,

'S, generally 19Presented as foyr.pye word (32 big)
Values: int, float, char, et not o automaticaly
" Forexampye, When declare 1nt the initial value of y i noto

Address.

Value

Ox3fc93fag 0x00000000 Cheat sheet:
0x3fc93fac. 0x420000e4 & variable = the address of the variable
0x3fc93f50: 0x00000000 * address = the value at the address
0x3fc93fs4; 0x0000001a E.g. from the left addressivalue
a | 0x3fco3fsg: 0x0000000f ® 8a=address of a = Ox3coafss s,
b [ox3fcgafsc 0x00000006 |, * *(0x3fc9365c) = valve atthe o
¢ | 0x3fc93f60: 0x00000000 0X31c93f5c = Oxb
| 0x00000000
| 0x3fco3fea ey
| ox3fcosfes DxO{}OOE:(<
| ox3fco3fec 0x4201652

HELP @

EX:

#include<stdio.h>

int main(void){

= 5 - of v
1n: :X = &v; val of x = addy
in = b
= &v;

X = v
«l‘-“'(*X = hokkx; val of x

*X) ;
is %d\n", (int)x,

) "value at %u is

printf("va

}

Enum & ARRANS:

1, Falleq - g 3
> Wed, Thur, Fri, sat, Sun};
enum week today - Tue;
Arrays: 5 list of things, starting from index 0, fixeq size

® dAnt abc[] = (o, 12,3, 4); = cand ch2nge size
® char def[3] S G0 S SRR inside RS optional
SRdef 1] = 15 // now def TS Sl s

>

ExERCISES - HEX

Ex: DboOllO_0Ol0O
[e—
© C}
;.A %review
Ox .
+ ops (add~ 2 c;mes)
Ex: | Ox4a %P >
Ox 73
Ex- | 8 bt result of Ox2A <<c2
8'2-.'}5 32 /4. Lozuz
binary. Db D0202010
€2 = 0blolvI000
hew: A8
Ex: 12-b:+ resuld Ox2be< H

2327 ‘oz 43
Ob OODOOO OO

<¢Y4 -» pol(ololl DoO
et

26 ©

Y4/72125 | PoinTERS., ARRAYS, CHARS, INTS, FroaTs... DATA REPREsEANTATION

DIGITAL SYSTEMS:

‘represent using binary , onloff, 1l
cea3ch O or | value = bit

‘W bits - encode 2" unique things
21 bit= 2 (0eor 2)
2 bits= 22 =4y
> 8 bits = 28 = 250

HOw mANY BITS ANEEDED?

-t possibilities = ceil (log, () bits
s light onlofeE=> | b+t » 195’.: 21
-days of week »ceil| log,7) 32

- states in US o ceil(log, $0) 26

CONTEX MATTERS: 8 -bit value, 28 unique Hiings , ex: Obloloooll can mean...
163 uns.‘sned

--q3 signed
© memory location

ec.

COMPUTER ORG:
‘oyte=8 bits
‘32-bit system = four- byte word

(OMPUTER MEMORY:
-4 byte words w/ addresses

-@3ch word contains 32 bits of Jdata

-express addresses as data n hexadecima)

‘consetuhve words have addresses that ave 4 bytes apact
-32- bk system can have 232 bytes of odata, or 23° Lowds
- variable Store & poiniers

POINTERS:

Tpointers must have Size (32 bits in size)
-data types have dFF. Bamounts of bytes
- pointers wmoust have +ype

PoINTER SynTAX:
int x;
int wptrox=8 x; & gets addy of x
int v zaptr.xenPteoy o creates pointer oF type ind

% dereference whwen vsed wl!l op.

EX:
= What will this output?

int main(void){
int x = -16; //make signed int -16
intx ptr_x = &x; //point pointer ptr_x to address of x
int y = -32; //make a int of -32
int * ptr_y = &y; //point pointer ptr_y to address of y
int result = xptr_x + *ptr_y; //add thing ptr_x points

//to thing ptr_y points

printf("sd + %d is %d\n", x,*ptr_y,result);

-16 -3’7_t pointer o 4 points| fo 9

Output: |-16 + -32 is -48

= What will this output?

int main(void){
int x = -16; //make signed int -16
intx ptr_x = &x; //point pointer ptr_x to address of x
float y = -32; //make a float of -32
intx ptr_y = &y; //point pointer ptr_y to address of y
int result = *xptr_x + *xptr_y; //add thing ptr_x points

//to thing ptr_y points

printf("sd + %f is %d\n", Xx,y,result);

Output: |-16 + -32.000000 is -1040187408

Interpreting the contents at &y as an int is a problem. y is a
float, but ptr_y is an int pointer. When we dereference,
we’re interpreting the bits as if they encode an integer

= What will this output?
Ex:

int main(void){
char ¢ = '1';
charx ptr_c = &c; //point ptr_c to c’s address
intx ptr_d = &c; //point ptr_d to c’s address
printf("ptr_c points to %c. ptr_d points to %d\n", *ptr_c, *ptr_d);

Output: ‘ptr_c points to J. ptr_d points to 525944906

Interpreting the contents at &c as an int was a problem. A
char is not an int...their encodings and sizes are different!
See that in a little bit!

= What will this output?
Ex:

int main(void){
int8_t e = 22; //8 bit signed int e
int8_tx ptr_e = &e; //point to it with correct pointer type
intx ptr_f; //make a 32 bit signed pointer
ptr_f = &e; //point a (32 bit) signed int to e
printf("ptr_e points to %d. ptr_f points to %d\n", xptr_e, xptr_f);

output: ‘ptrie points to 22. ptr f points to 923355158

Interpreting the contents at &e as a 32-bit int was a
problem. Both pointers are of integer type but different
sizes of integers! (more on that in a little bit!!!

= What will this output?

int main(void){
int8_t e = 22; //8 bit signed int e
int8_tx ptr_e = &e; //point to it with correct pointer type
int* ptr_f; //make a 32 bit signed pointer
ptr_f = &e; //point a (32 bit) signed int to e
printf("ptr_e points to %d. ptr_f points to %d\n", *ptr_e, *ptr_f);

Ex:

Output:

ptr_e points to 22. ptr_ f points to 923355158

Interpreting the contents at &e as a 32-bit int was a
problem. Both pointers are of integer type but different
sizes of integers! (more on that in a little bit!!!

»> made 2 Ffloat bot an int pointe~ 4o i+
- interpreted floar 25 an vt - CANT!
» J:€F€. Crom castmg = int & floats are

intcompatble.

2 interpre+ing char as nt

D interprehng right byte but wrong neighb.

dboth of +yp@ nt bor A:ff. int Ssizes

dprinting the address, not+ val.

‘pointers live in memory & can be pointed to (pointer po:mter)

int main(void){
int e = 22; //32 bit signed int e
intx ptr_e = &e; //point to it with correct pointer type
intkx ptr_ptr_e= &ptr_e; //make a pointer to a pointer

}

Address: Value:
EE-""""“\\\‘___> 0x3fc93f50: 0x00000000
0x3fc93f54: 0x00000016
ptr_e T Lax3fca3fss: ——Ox3fc3fsd
0x3fc93f58

r@x3fc93f5c:
0x3fc93f60: 0x00000000
Ox3fc93f64: (/// 0x00000000

tr otr e 0x3fc93f68: 000000000
ptr_ptr_ i

= Consider this:

int main(void){
int e = 22; //32 bit signed int e
intx ptr_e = &e; //point to it with correct pointer type
intkx ptr_ptr_e= &ptr_e; //make a pointer to a pointer
xkptr_ptr_e = 15;
printf("The value of e is %d \n", e);

Output: [The value of e is 15

ptr_ptr_e points to ptr_e, so we need to first
derference to get to ptr_e’s value, which is itself a
reference (address) to e, so we need to then
dereference a second time!

-can _manipolate data n place

int f1(int x, int y){ void f2(int x, int y, int xz){
return x+y; *Z = X+Y; Va
} valof c=xty val of ¢
void app_main(){ void app_main(){
int a = 5; int a = 5;
int b = 9; int b = 9;
int c; int c;
c = fi(a,b); f2(a,b, &c);
¥ Laddy of ¢

"Take in x and y,
give me back their
sum. I will then
copy it into c.”

"Take in x and y, store
their sum where z points.
Just take care of it. I trust
you.”

These effectively do the same thing, one
modifies "in place” and one modifies externally

-pointers are valuable (refer +o large memory Structores)

AerAvs:

cin (, arrays = (onknuous chunks of memonry

- fixed size 8 mewmory ldefne length @ stanrt)

1) allocates memory €for array

z) creates pointer by which you 2cc@SS thatl gpot in memory

= Consider this code...

int y[10] = {1,2,3,4,5,6,7,8,9,10};
*(y+3) = 123; 123
printf("sd\n",y[3]1); //what does this print?

= Dereferencing with an offset is identical to
indexing! In fact:
[+ ¥I31 === x(y+3)//SAME_THING |

= They are equivalent...and goes both ways:

intx d; pointer 133

int y[10] = {1,2,3,4,5,6,7,8,9,10};

*(y+3) = 123; cnange 3+»d el

d = y+3;

printf("sd\n",*(y+3)); 123
printf("sd\n",d[1]); //what does this print?

S d pointing to Ith €1 3 | more

%(d-1)=3
INOEXING:
. no boundary checks!

cwatch Uimcts!
. can print into unknown parts of wem,

ARRAY = FIXED pointer (cant reassign)

int a = 11;
intx x = &a;
int y[10] = {1,2,3,4,5,6,7,8,9,10};

y = &; //not allowed will throw compile error
printf ("sd\n",*y);

//x and y are the same type! int pointers! (sort of)

ARRANS INTo FunCTionNS:

+ 3l C function SeesS S arvrays polnter

= Hand length/metadata about array in along with
array

void double_every_entry_better(intx ptr, int length){
for (int i = 0; i<length; i++){
*x(ptr+i) = *x(ptr+i)=2;

i
void app_main_better(){

int LEN = 10;

int y[LEN] = {1,2,3,4,5,6,7,8,9,10};

double_every_entry_better(y,LEN);
—every_entry_ y metadata

dno way to know len
of array in 2 func.

specizl char mark ed (notr)

—
S string lchar aveay: char x[]= 3¢ o', e, Vs, '\0’'3 longer

= ‘‘cats” eease~

ASCil: 8 bits, 256 pessibiliiies (onty 128 used)

-Ob0bl 0OCOSl = ‘A’
\

-0 bolloooo)| = ‘a’

-0boO = Nocel

UNICODE: move modern

cup fo 4 byles (32 bksg) vs.) byte/ & boks Ascl
- represewnt vl mll possible chavs- we've used

8 bits= | byte

-based iw ascii
.computers expand in 8.. (lo, 32, 64)

Booteans:

-0= false

‘everything €lse = +rue
cone bt

]uns.‘sned ‘nt

LDAISIGNED INTS (pint):
.oint8_t - lbyte, 8 bits = 28 vals
-vint(6-t > 2 bytes, 16 brks =2'® vals

INHERENT MODULARITY:

wissooco so far

-using Fixed # bits may resclt in overflow (resuits out of vawnge)

cCommon appvoach: t'sv\ev'e extra bet.
. wrap around

- potential cauvse of bugs, cawn be good for cryptography

= What happens if you add 131

rfl
to 155 with 8 bit uint8_t? overd”

00000000
10000011 (131)

4+ 10011011 (155)

100011110 (286)

overflow 11000000

10100000 01100000

10000000

NEGATIVES: Solubons...
SIGN BIT:
if msSb is 4, intevpres 3s neq. Sigwu

Dbo0OIcoOl = +(l6+1)== 17 }
Ob lovlooo l = - (le+t)==-17 ~double D
‘ONES COMPLEMEANT ' :

'f MSb is O. interpret 25 ounsigned val
“f mSb ¢S |, neq.

=A= A
000001000 1 == +(l6+1) PROBLEMS:
0bIILOIN O 5= bitfIip OF 17 ==<1 ‘svgned O

11100000 00100000

01000000

Example: (7 + 3) mod 23 ?
0

7 000 1
11 001
6 2
110 010
5 3
101 4 011
100 L02-5

nowever, signed O (+o0 8 -0) = B16 PROBLEM

- 2ddisob has Carry/ wvrap 3ound

TANHEREANT Mmoo

.2dd | & move Cw = The negativesof a number A can be expressed as:
« If I start at “3” aka 0b011, A= -4 —A=8-4

what could I add to get to 1? 080 = Or written a different way:
= To go back 2, I can add: " o1 —A =0b001+0b111 —A

e 2¥_2=6 = Ob111 minus any 3 bit value will be the same as
= (3+6)%8 = 1. 6 2 the bitflip aka bitwise inversion of that value (~4)
. OF: “-010" = 110 110 010 —A = 0b001 + (0b111 — A)
. _2'= 8-2 5 3 * So the negative of any value must be:

101 011

100

—A=1+~A

2'S COMPLEMENIT: A =4 +wA

= If we make 0b100 into -4, the system of numbers
becomes consistent and easily extensible to more

bits. 0 0
-1 1 5 *
000 > 1111 0000 500, 5
111 001 1110 0010
3
-3 1101 0010
-2110 010 2 -4 1100 0100 4
g 1011 0101 s
101 011 QLo 0110
- 6
-3 100 3 1001 ;400 0110
7 g 7
-4

© pOSAneg range, not inherently -
‘negative weighted bits

-msb .28

-most pos H = +2N-1_

cf 210 bits = 1> 0Obll)... Il =
- no dovble zevo

SIGNED INT _(ints):

= If you want to interpret it as a 2's complement

0b%0001 001 The Ob means binary

-128's place:/v 1’s place:
-128 1
2’s place:
0
4’s place:
0
16's place® 22 -128+8+1 = -119
0

64’s place:

0 32’s place:

17/25 0 MIT 6.1904 Spring 2025

* int8_t: 1 byte (8 bits): 28 values: 256 numbers to rep

o ° Express from-128 to 127

Increasing positive values 2 '1%8

-1

Increasing negative values 2 I

00000000 10000000

*int16_t: 2 bytes (16 bits): 216 values: 65,
 Express from -32,768 to 32,767

-32768
1

JEEeEerny

536 numbers

-1

Increasing negative values > I

0
l Increasing positive values 2>

00000000_00000000 10000000_00000000

111

* int32_t: 4 bytes (32 bits): 232values: 4,294,967,296 nums

 Express from -2,147,483,648 to 2,147,483,647
0

l Increasing positive values 2 -1147‘:83548

-1

Increasing negative values > I

00000000_00000000_00000000_00000000 10000000_00000000_00000000_00000000

4/7/25 MIT 6.1904 Spring 2025

EXTENOING DIGITS:
‘need to sign extend

ExX: 8 bit -64 =
16 b+ -64U =

Obll 00000 O

SHIFT LEFT:

EX: +6U =
-4 =

FiLL W/ 4as

OboOl1OOODOOO
©bllOOODO BO

SHIFT RIGHT:

‘movre Sticky

- +ype dependent
-signed: £ wl/ as
cunsigned: @1l w/ Os

NON-INT #s: fixed p+
- ra2dix marker &
- precision & range im:ted

cmore bits on right of . =Ffewer on
cManyg things do not exist ‘n linkar

int32_t == “int”

Ob il llooO OO0

#LOGICLAL = unsigned
¥ ARITHMETIC = Sigved!

representation
@ F:xed et n bindvy

FEELELILIPLEEELEIRTELELIRLELELery

L02-67

= Consider two signed numbers: +32 and -32 as 8 bit
signed values:

+32 = 0b00100000
-32 = 0b11100000

= If we left shift (<<) what do we get?

+64 = 0b01000000
New digits that
-64 = 0b11000000> Sarestame

zeros/same
= Consider two signed numbers: +32 and -32 as 8
bit signed values:

+32 = 0b00100000

-32 =0b11100000
= If we right-shift (>>) what do we get?

+16 = 0b00010000
-16 = 0b11110000

1864
seace

New digits that show
up are different

= Pretend there’s a radix marker (*.”) at a fixed
location in your binary...then reinterpret meaning of

bits. 0b1000.1001
1/8's place:
0
1/4's place:
0
. 1/2’s place:
4's place: L's place: 1/2

0 2’ place: =

0 16

<+

Ex: ObOlooloo| = +

LY

ExPonENTIAL FoRMAT:

= If you needed to encode something that is best = So if you had an exp8_t with 0001111100 as its
represented by orders of magnitude? value...that means: 0b01111100 The Ob means binary
= Have an 8-bit type called exp8_t where the 8 bits
represent a unsigned 8 bit number exp which is used in
the following encoding formula*: o 128.5 |ace 1Sg|ace
e
= —127 252
Value = 2% e)(poﬂtzﬂ\U sl s Iace 2's place: Iace
Base'w;%a\f‘u\a 32‘5 place: |
A 2 dsplace: 64,37416+8+4= 124

= Represent from:
= Up to: 2255127 = 2128 5 3.403x10%8
= Down to: 20127 = 27127 ~ 5877x1073°

16's place: g's place:
16 8

« So actual = 21247127 = 273 = 0,125

*made this up but I'm going somewhere with this so bear with me...
. |ar5& range of #s, but Iimcded precision

IEEE 754
-float: 4 bytes (32 bits), 232 vals

-wide range & good precision
.decimal p+ S Floating not Fived

Cormat:
J|gn exponent (8 blts) fraction (23 bits)

| |0|1]1| [1]1 |o]0[o|1]o|o|o]o|o]o|o|o[o|o[o|o[o|o|o|o|o|o|o]o|c| 0.15625
3130 2322 (bit index)

Value = (_1)51gn_ 2exp—127 (1 + Zi=1 by3_i27¢)

28S-129
.exp up +o 2 = 2'%¢
0-129 -l27

down to 2 =2
Value = (—1)sien. 2exp=127.. (1 4 23 p,;_;271)
Jlgn exponent (8 b\tE) fraction (23 bits)
I

(olo[s +]a] s]°I°|°I1]°I0]°|°I°I°I0I°I°l°|°I0I°I°l°I°I0I°I°I°l°I

N _C128s: jost cavre ab RepPRESEMTATION

1 30 23 22 (bit index) 0
Mantissa:
1+271.0+272-140..=1.25
Sign bit
+1 Exponent*:
1/8 (0.125) ALL TOGETHER:
=+1 15_2 = 0.15625
- 8 4 32

*already did earlier
32 bit Float does AIOT le+ us represent move #s. 232 Luique vals onty
cCompromiSe - Sacra€ce precision for rvange
-can haue wmassive ‘qaes’

- 2approximatieon basedl

= 32 Bit floats represent 232 (4.3x109) values
between —3.4x1038 to +3.4x1038

= There is NO WAY to represent every single number
between these to limits with only 32 bits.

= There is NO WAY to represent even every integer
between those limits

#include<stdio.h>

int main(void){
float x = 123456789;
float y = 123456788;
printf("The value of x is %f\n",x);
printf("The value of y is %f\n",y);

Output: [The value of x is 123456792.000000
? The \\;alﬁe of ? is 123456784.000000 }-‘"‘0\1"420‘ +o neavest representable float

= Exponential representation means:
= Merging (+/-, etc...) two numbers of vastly different scales
can result in the smaller one getting consumed by the
larger one and lost

int main(void){
float x = 1.35e9; //create float that is "1.35 billion"
float y = 23.0; //create float that is "23.
float sum = x+y; //sum them
float sum_wo_x = sum - x; //remove x again
printf("x is %f\ny is %f\nx+y is %f\nx+y-x is %f\n",x,y,sum,sum_wo_x);

x is 1350000000.000000
Output: |y is 23.000000

x+y is 1350000000.000000

x+y-x is 0.000000

FLOATS (cont.)

‘has 3 dooble 2ero
3ot wnecess. issue (beneficial For Iimits]

EXERCISES:

Ex: | -§ in 8-bit 2's complement: Oblilljon

Ex: | negate U-bit 2's comp. ObNO o make it +2's Comp. &
“Az1+vwA = |+ 000l = ObOOIO

Ex: | negatl S$-pitS 2's cowp UObOlooo +o wmake neg 25 come H
-A'--.||+ Oblolti = 11000
ObOII |

Ex: | Obooll
Obl0IOD

ap=tet
Obnltio

Ex: - ObooONIN
|0l||

Ex: DLIOOOO! > DLOIIOL = O (2's comp. wot.)

@ ex: decimal equivalewt of 2's comp. hex Oxab

‘o b.‘nzv‘~5: [E-2{- Y-}
64 16 4. (3PP'3 n.eg.
invert: Ol1OI1-0I0O +| = OlO1_0I0| -» =8S s'gn
Ex: O0x3c<¢c2 in 8 b:ts?
[o]
—
OOIl _N0O0 KK 2 = IIIl-000OO

EX: Ox8e >>3

F |
1000_ 1110 %23 = 111 l-000O)
e

@ Ex: |2'Ss cemp. hex of decma) & =
1 in binary: 06000]|
wA+l = pbliil =F
@ Ex: 2's comp. 8 bt result of Ox8e >23
binary: 1000_1110
2rithm. SWt: 1111 .0001 = FI
@ EX: | OxClogoooo< Ox(3580000 - O

cbinary, invert bits & 2dd |

ex: What is the decimal equivalent of 32-bit floating point number
0b1011_1111_0100_0000_0000_0000_0000_00007?
o i

——————
- exp= ZIZG-'Z?

=2t x frac= (1+427") = {I"’é
244484 bt 3L 6Y , .
zi2¢ 27 (14 27") =-3 -3z =-05-0.28 =-o.7sl

o
Ex: | Dx43A8 000 0O

010D -.0DII_l0DIO - 1000 OOOCD._. DODO. ODODO.-.0ODOOO

33¢

EX: -25.0 in fleating 32-bLit hex

Signz1 (-)
25z 16+8+1= ObLlIOOI - >4

0=o0 Obl.lcol x 2"

exp-127=4 -9 exp =131
131128+ 2+1 2 0bl00OCDOOII

l—-1oo00O0C!I_|00OI_ DOG...
EX: | 0.2187S in 32-bit f.p. hex
Sign=0
-3
0=2° = 0bD > < -3 exp-127=-3 D exp:z124 30bOII1 1100 %2
2-4 273 2"
0.21895 = 0.12S + 0.625 + 0.0312§ O-Olli1olo_ (000000 0OO...
L/() (, =.001110... x273 - €xp wantis
\/\E— A S-sm .
Wno....

€ o o

Write the number 0.21875 in 32-bit floating point representation. Write your answer in hexadecimal:

3E600000

OblOIO & invert = 0bOIOI+120bONO = & [j:}mo.oo%
@ EX:

Signed 0b00011 =3 -6+3= -2 - ObIIIO|

a = 0b1100;

@ EX: b = 0bleo;
signed result = a ==

result = ?

oo
@1

Ex: &= OblIOIl = 0bLOOID] = -§ a-b=2 -5 0bOOOIO
b: oblool = OboON = =7
Ex: &= 0boOlOI) = 1| at+bz=I1T ObOI100OO1

b= obollo = 6

Ex: | 243¢«Hl2 ==71"Su2 |14 woltlidiv

243¢¢2 ==2M0 |y 2dd
Oi10) .
§¢«2 == 1™0o| Yy bt Sheff

0100 == 0IlIl * 1o10 | D100
e —

b

oooo “ioi0 | 0 100

1010 | 0100 = 111D =||'-l|

intx x = (int*) 0;
EX: X=x+3;

each int +akes 4 bytes in memory

chars take |
What is the value of x?12]

EX: | int DOed vais= $0,2,6,9,12,1S 18,21, 24,273

(&vais[?]) -2) = move 2 elements back from valsl?] = IS

U/8/25- RECITATION 2: signed #s, floats, peiniess

SIGNED HB:

INT-> BINARY -=A=41+wnA

Ne2
-l .

BINARY 5 INT ve-2""'bn, + Zo2'b Ex: 1111-1010

v invert: 0000_ 00 ¢

+1- 0co0d-0(10

#: =6

=0

Alternative way: do the integer -> binary again
(negative of negative = positive!!l)

-8+ -3
Ex: \ ©
—')
- 2 u i iqneo
0\)
; . ~8: DOLl\OdO 3: ObOOLI
\ \ / -3« 3 +(: DbL(IDI
\ .. Oblooo
B~ 7 2dd 0obuvot
7 -8 1010¢
——d
s
Ex: w3l / . ° F P

Smaliest = largest © vawe = 061000000 = -2°: -Gy

6 $§ 4 3 2 ¢« o
= 25424423422 42"' =63

largest = targest ® vaive = oborng =

LOGICAL & ARITHMETIC SHIFT:

[<4 3lways F'Il with Os

>

vvnsigned = pateh with Os (logieat)

signed = patch with 1S if MSB=l, OS other (arithmet.c)

FLOATS:

2) Floating point representation ()
sign’ exponent (8 bits) . fraction (23 bits)]
|
[o]o[1[1]1]1]|o] of o] 1] o] o] 0] o] 0] 0] o[0] o[0] o] 0] o] o[0] o[0] o[0 o] 0] = 0.15625
3130 2322 (bit index) 0

Value = (—1)si8n. 2exp=127 . (1 4 ¥23 p),_;271)

Floating point numbers are represented using 32 bits of binary. The most significant bit represents the sign (1is negative, 0
is positive), the next 8 bits represent the exponent +127, and the last 23 bits represent the mantissa. The mantissa encodes
the fractional part of the number. The actual value of the number is sign * 26%Po"¢™ =127 1 fraction.

2.1) Floating point to decimal

To convert from floating point to decimal:

« Convert hex rept ion to sign_nor t_mantissa repi

« If sign is 1, then sign is negative otherwise sign is positive.

« Find the actual exponent by subtracting 127 from the normalized exponent.

+ Express numeric portion as 1.mantissa.

If the actual exponent is positive, shift this number to the left by exponent bits. If the exponent is negative, shift this
number to the right by exponent bits.

« Convert the resulting value to decimal treating each position to the left of the decimal as a positive power of 2 starting

at 0, and each position to right of the decimal point as a negative power of 2.

EX: | decimal equivalent of 32-bit Float'ng pomt nomber OxUOgUOOOO ?

Convert to binary: 0[100. 0000- IDOO.- ©100.- CO0O- OOOO- 090 - 0OCO- 0900

) / Pk S R ‘.
Sign Eexponent mantissa
27+1= 1249
12a4-127

(-1 x2 x (14 [0.274 [0-22) .. +[2757)

s 1 x2% x (1435)

2.2) Decimal to Floating point

To convert from decimal floating point:

« Convert original number to base 2

« Shift number to the right or left so that the shifted number is of the form 1.mantissa. In other words, the decimal is just
to the right of the leftmost 1. A shift to the left represents a negative exponent whose magnitude is the number of bits
shifted, while a shift to the right represents a positive exponent. For example, 06100.0 = 1.0 % 22, whereas
0.01=10%2"2

« Find the normalized exponent by adding 127 to the actual exponent.

« Your floating point number is sign_normalizedExponent_mantissa

« Convert the 32-bit binary representation to hexadecimal.

M
Ex: -5.7S in 32-b:t floating point representabon

Sign =\ (v\esal:ve)
-1
Sz=y+l = 2%+1 = OblO} Oblol. 11000 Ex: OlIl = 1ilx2
-—, [=4
—> 2 (sci. notatidn)
0.75:=0.§+0.2S = 2™+ 272 2
Obl.OI(0O x2 (Sh'F+ lefF+ 2)
—y
mantissa P

exp-127=2- exe=129

129 12841 = 100000 |
I-l0O0OpoooO|(_OI1W0DO.|.
—
23 bits
c o B 8 000D

PoimTERS:

‘32 bit mewory 2ddy

M ff. data dypes = d FF. # of bytes

-need to gpecify +ype of poiniter So '+ knows how wmany bytes +o vead &8 interpret

Bx = adoy of

-valves passed /n cunc.f.'om as CorPies not Or-'g-'na’

ARRANS".
-continuovs chunksS of memory
-musd declare typelsize

‘Stores First addy in sectton 0of wmemovy

Ex: ink ylol=£0L 2,3 4,5 6, 2.2 9,003
printf (fefod \n", y[37);
*(943) 2U print 4!
(y+3)[0]

(4+3) (2] > prints ©

[}

-2efay of chars (censtant pointer)

-use ascii ewcoding to represent chars

cuse “\O” wnoull char +o indicate end of Stvring
Ex: pr:niF(""/oc\v\ ", eS) 5 ‘A’ String = $! deovble quot es
olod\n C' > 67 char = ' ' single quotes

deref: sl2)z‘a’
#(s+12)z "2°
printflielo ¢42) & prints uné | end when 7+ sees \0O woull
oufput: ‘o world™

3) Square

E X: Write a function that takes a pointer to an int as an input and returns the square of the value it points to.

1, int square(intk x) {
2 //your code
3 return sxxxkx; valve @ X # valve @ x
4 }

100.00%

You have infinitely many submissions remaining.
Your score on your most recent submission was: 100.00%

1) String index

Ex'— Write a function that recieves a string and a character as inputs and it returns the first index at which that character is four
in the string or -1 if its not found. Again, write this using array indeces and then rewrite it by updating the pointers and
dereferencing them to access the string's characters.

1, int string_index(char xs, char c) {

2 // don't have the len —— know to stop when reach \@ (value = @)
3y for (int i = 0; s[il != "\0'; i++) {

4 if (s[il == c) return i; // if at index i, char == char

5 ¥

6 return -1; // if failed

7

8 // pointer version

9 int 1 =0;

10 .. while (*s != @) { // loop until s hits end of the string

11 if(xs == c) return i; // dereference s, check equal to ¢
12 s++; // move s to next element

s i++;

14 ¥

15 return -1;

6 } °®

100.00%

You have infinitely many submissions remaining.
‘Your score on your most recent submission was: 100.00%

5) Pointers to pointers

Ex:
1| int x = 60004, y = 314;
2| int *ptr, *ptr2;
3| ptr = &; // ptr points to x, so *ptr == 60004
4| int skptr_to_ptr;
5| ptr_to_ptr = &ptr; // ptr_to_ptr points to ptr, so *ptr_to_ptr == ptr and *xptr_to_ptr == 60004
6| x = @; // we still have skptr_to_ptr == sptr == x, just now they're all @
7| *ptr = 1; // we still have xkptr_to_ptr == xptr == x, just now they're all 1
8| ptr2 = &y;
9| *ptr_to_ptr = ptr2; // This is tricky! Draw a diagram with what everything points to and what
value everything has.
10| // Answer: We still have #ptr_to_ptr == ptrl. Since we assigned the new value to ptr2, now ptrl
== ptr2. In particular this means kptr_to_ptr == xptr == *ptr2 == y == 314
1|y = 77; // Changing the value of y changes all of the above equalities!
12| // But what is x? Nothing points to x anymore, so we still have x == 1
13| x = 2; // This changes x, but none of our pointers are related to x anymore so nothing else
changes
will inhe rt int x[1 = {1,2,3,4}; //make four long int array call it x
(414128 -C STRINGS wwat's in —p int y[10]; //create ten long int array, call it y (But don't declare values)
memory int z[5] = {1}; //create array 5 long called z, @th element is 1, rest are @
before hand
ARRAYS:
.continuous Poriions of memory 2ccessible va ponter
-Char array Syniax more Flexible char al10] = {'t','h",'e'," ','c','a','t","'."'}; //10 char array with two nulls
//at end
‘Char 3re Jways null- +erminated ;
2us 3 9 "3 char b[] = "the cat."; //9 long array with "the cat." followed by null
void app_main(){
int x[1 = {1,2,3,4,5}; //compiler figures out array length large enough for items listed
//10 long array of ints accessible through ptr y
//only five vals specified (rest are unknown)
int y[10] = {10,11,12,13};
printf("%d\n", x[11); //prints 2
d\n", *x); //prints 1 same as x[@] or *(x+@)
d\n", x); //prints 1070153528 (3fc93f38 in hex)
d\n", x+1); //prints 1070153532 (3fc93f3c in hex)
printf("sd\n", *(x+2)); //prints 3...same as x[2]
printf("sd\n", *(x+5)); //prints undefined...same as x[5]..no idea what’s in that memory
printf("sd\n", *(y+1@)); //prints 1...because you bled into where x is and x[@] is 1
= What does the following print?
hexadecimal
printf("sx\n", *x(y+2)); 0xODC
12 in hex =
void app_main(){
int x[1 = {1,2,3,4,5}; //compiler figures out array length large enough for items listed
//10 long array of ints accessible through ptr y
//only five vals specified (rest are unknown)
int yl10] = {10,11,12,13};
printf("sd\n", x[1]); //prints 2
printf("%d\n", *x); //prints 1 same as x[0] or *(x+8)
printf("sd\n", x); //prints 1070153528 (0x3fc93f38 in hex)
printf("sd\n", x+1); //prints 1070153532 (0x3fc93f3c in hex)
printf("sd\n", *(x+2)); //prints 3...same as x[2]
printf("sd\n", *(x+5)); //prints undefined...same as x[5].no idea what’s in that memory
printf("sd\n", x(y+10)); //prints 1...because you bled into where x is and x[@] is 1
Address: Value:
each int 0x3Fc93f0c: 0x420001ec
. . 0x3fc93f10: 0x0000000a | .
occupies 22 bifs | ox3ro3fl x0000000b | “int y[10]" Stack into
0x3fc93f1 0x0000000c e —
0x3fc93f1 0x0000000d v
0x3fc93f2 0x00000000 memo 3
0x3fc93f2 0x00000000
0x3fc93f2 0x00000000
0x3fc93f2 000000000 . L
0x3 933 0x00000000 | —— “int x[.
0x3fc93f3 0x0000000/
@x3fc93f3: 0x00000001;
@x3fc93f3 0x00000002
Ox3fc93f4 0x00000003
0x3fc93f: 0x00000004|
0x3fc93f48: 0x00000005

- but, computlr doesn't see whole memory - just glmpses

Sizeof: provides size of data object (in BYTES)

char al10] = {'t','h",'e"," ','c",'a","t","."}; //10 char array with two nulls
char b[]l = "the cat"; //8 long array with "the cat" followed by null

int x;

char y;

int z[15];

printf("%d\n",sizeof(a)); //prints 10

printf("sd\n",sizeof(b)); //prints 8

printf("sd\n",sizeof(x)); //prints 4

printf("sd\n",sizeof(y)); //prints 1

printf("sd\n",sizeof(z)); //prints 60 é=4-1§ (€ach int =4 bs"es)

printf("%d\n",sizeof(z)/sizeof(int)); //prints 15 will 9ef you array

:worksS for char blc €ach char iS only | byte

in (, 21 function args are passed by valve!
-when array (s Landed in 23S arg to funcion n C,
Can only see peinter, NOT +he 2fray

int sum_array(intx ai){

= sizeof provides the number of bytes that a thing is.

int sum = 0; = On previous slide, the "thing” is a pointer inside a
for (int i = 0; i < sizeof(ai); i++){ function and that is:
sum+= ail[il; = only four bytes (on 32-bit system)
. = or eight bytes (on a 64-bit system)
3 return sum; = There is NO WAY to inherently know the size of an

array that is passed in as an argument in C.

int main(void){ = You MUST:

int aal10] = {2,4,6,8,10,12,14,16,18,20};
int ¢ = sum_array(aa);
//value of c? =2

}

= Pass along variable informing of size of array

= (general solution)

= Establish some sort of rule-set for the size of the object

= (C-strings)

int aal10] = {2,4,6,8,10,12,14,16,18,20};

int sum_array(intx ai){
int sum = 0;

7]

return sum;

}

int main(void){
int ¢ = sum_array(aa);
printf("sd\n",c);

printed

printf("size of ai: %d\n",sizeof(ai)); 4 What is
printf("size of aa: %d\n",sizeof(aa)); yo
for (int i = @; i < sizeof(ai); i++){

sum+= ailil; —_— here?

wore 3acceptable:

int sum_array(intx ai, int arr_len){
int sum = 0;
printf('size of ai: %d\n",sizeof(ai));
for (int 1 = 0; i < arr_len; i++){
sum+= ailil;

return sum;

H

int main(void){
int aal10] = {2,4,6,8,10,12,14,16,18,20};
int bb[5] = {19,20,21,4,1};
int ¢ = sum_array(aa,sizeof(aa)/sizeof(int));
int d = sum_array(bb,sizeof(bb)/sizeof(int));
printf("sd\n",c);
printf("sd\n",d);

‘Sizeof is NOT 2 function, it's an operator

interpreted @ Complle +ime neot run Fime

-before. code runs, evals where vsed & replaced w) &

there’s no way to iNherently kvnow Size of 3rray

SoLuTiONS:

-p2ssS 2long Var informing Size ofF array

(genera) soln)

- establish Some Sort of rule-set for s'2€ o0fF obj (L-str)

C-STrinve
‘null-ferminated char array

-3ll elements are ASci)

-C-String 2array pPoinis +o where IS+ wnoll occurs

String. h
clibrary
cdetermne attr.butesS, manceuiate, Compare
‘Strien: detrermine 1@n of C-siring
int Strien (Const chav %St)
-takes in pornter to (-String const char ¥

ind jsl-r(en(tousf chav wstr) &
char mSarcher =sir;
while (#searcher != *\0') §
3 Seavrcher +¢;

re+urn Searchev-s¥r;

. rerurns 1ength (# of non-wull chars ve wuntil null)

‘Strepy: copy 2 C-String

-copy to destination pointed by src (+ransfer data)

.¢can be dangerous (overwriie)

-pree lives afier buffer in memory
So whewn we call jStriopy, Copres over it

cStrcat: Concat. a ¢-S+ring

.2dds onto desi:nation pted 4o by Src

char # jstrepy (char wdestnahon, const char #sevnce) §

vink-32 spo+r=§:
Whele (#(Source +Spot) '= Nucd) §

desknatonlspo+ J= s (source +spot)]
Spotr +=1; e write code before switeh ind.

destinaton (seotd=0;
return destnaton

char o jstrcat (cwar sdestination, const char ¥ source) §

iat woll-loc = jsirien(destination);

return jstrcpy (destination + nultl-loc, source);

IN MEMORN:

int main(void){ Original Memory: Final Memory:
char prez[] = "Sally Kornbluth"; buffer —[= buffer —[s |
char buffer[4]; = i

int len = jstrlen(prez); .
printf("length of string: %d\n", len); prez — Then Call: prez
jstrcpy(buffer, prez);

printf("0Original String: \"%s\"\n",prez);
printf("Copied String: \"%s\"\n",buffer);

@

Qe

[«

jstrcpy(buffer, prez);

length of string: 15
Original String: "y Kornbluth"
Copied String: "Sally Kornbluth"

ELLFEEEEI -

BEEAEE

4/13/25 MIT 6.1904 Spring 2025

-2l bytes have addresses & accessible

= strcpy: copy a c-string

= strncpy: copy n characters from a c-string

= strlcpy: copy n-1 characters from a c-string and
restrictions: —» makes sure to NULL terminate

= strcat: concatenate a c-string
= strncat: concatenate n characters from a c-string

= strlcat: concatenate n-1 characters from a c-
string and makes sure to NULL terminate

STRING.H ComPARISONS:
Strcwmp Ompaves First n chaeg

Strncmp compares Eentire C-String

OuUTPUTS:
2o First unmatching cwar 'S lower n Stel than ste2
© equal
>0
string.h Search Functions char * strchr (const char % haystack, char needle);

= Looks for first instance of needle in c-string
haystack and returns a pointer to it

= If it isn’t found, it returns a NULL Pointer!

= Example:
= Determine if there is an ‘I’ in “Sally Kornbluth”
= How could we determine where this first occurrence is?

= strchr: Find first instance of character in c-string
= strrchr: Find last instance of character in c-string
= strstr: Find location of sub c-string inside c-string

= strtok: Tokenize c-string into sub c-strings.
(exercise this week!)

char * strrchr (const char % haystack, char needle); .,apn % jStrchanlconst chan # haystack, char needie) §
vint.32 ind=0;
wwie (haystack[ind]) !'=ANuLL) &

if (% {haystack +ind)==needle) §

= Looks for last instance of needle in c-string
haystack and returns a pointer to it

= How must this function’s search differ from regular return haysStack + imd;
strchr? 2
ind++;
3
serintf ;

.not+ part of String.lk Kb
©Similar to Printf but writes do 2 Siving you evovide, not the iermina|
- Fumction returns K chars wrtken

int i = some_function(19,86); //return 2012
char temp[10];

sprintf(temp,"%d",1);

//temp now holds the c-string: "2012\0"
//(NULL is auto-added in sprintf)

EX

Generate C-string that has every
number in it from 0 to 1000!

= One function that
repeatedly uses
strcat:

= One function that
uses sprintf in
conjunction with
pointer arithmetic
directly!:

//version one using strcat:
char totes[100000];//big enough
void build_num_string_1(){
totes[@] = @;//null first value
for (int i =l i<1000; i++){
char temp[10
sprintf(temp,"%d ",i);
strcat(totes, temp);

//version 2 using sprintf and
//pointer arithmetic:
char totes[100000];//big enough
void build_num_string_2(){
totes[0] = @;//null first value
int tally = 0;
for (int i =0; i<1000; i++){

tally += sprintf(totes+tally,"sd ",i);

} }
printf("%s\n",totes); printf("ss\n",totes);

‘Strcat has to go throvgh Str 8 seaveh for noll repeatedly
-Slow, +a2kes (onger

= longer run times for longer Strs

Structs:
.can have member vars, but do not have memover me thods/ funcs

.define, access w! dot op [ex: thing.x +o 2cceSS +hing's x op)
#include<stdio.h>
#include<string.h>
struct Subject{

struct Subject{

int dept; int dept;
int units; char'nane 11001
char name[100]; int num_students;
int num_students; i

I

int main(void){

struct Subject our_course;

our_course.dept = 6;

our_course.units = 6;

strcpy(our_course.name, "6.1904: Intro to C and Assembly");

our_course.num_students = 255;

printf("%s has %d students and is in Course %d and is %d credits.\n",
our_course.name, our_course.num_students,
our_course.dept, our_course.units);

Structs with FunctionS: modular packagel code

//function takes in struct Subject, returns a struct Subject
struct Subject make_subject2(struct Subject s){

s.dept = 8;

s.units = 12;

strcpy(s.name, "8.02: Physics 2");

s.num_students = 500;

return s;

.arqs 3lwaysS passed by vailve

our_course = make_subject2(our_course); //call function on our_course return/overwrit
printf("%s has %d students and is in Course %d and is %d credits.\n",
our_course.name, our_course.num_students,
our_course.dept, our_course.units);

‘lots of +ime 4o make copes-cCreate pomters
-lofs of mem.

instead

STRuUcT PoiINTER:

= Just like everything else, you can have a pointer to a
struct

= The pointer allows us to reference things in memory
(round-about way of passing by reference) and
modify it directly!

void make_subject3(struct Subjectx s);

printf("%s has %d students and is in Course %d and is %d credits.\n",
our_course.name, our_course.num_students,

make_subject3(&our_course); //call function on pointer to our_course
our_course.dept, our_course.units);

= What would/should this print?
() ble # s
(#s). units =|zi-D
S =dunits =12, same
Combo of * . (deref. 2 wmember)

lower priovr'ty than .
ACCESS MEMBERS:

C OPERATOR HiERARCHY:
Appendix 3: C Operator Precedence

Precedence | Operator Description Associativity
1 ++ - Suffix/postfix increment and decrement Left-to-right
(0] Function call
[] Array subscripting
Structure and union member access
-> Structure and union member access through pointer
2 ++ - Prefix increment and decrement Right-to-left
+ - Unary plus and minus
!~ Logical NOT and bitwise NOT
(type) Cast
* Indirection (dereference)
& Address-of
3 * /% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
5 << >> Bitwise left shift and right shift
6 < <= For relational operators < and < respectively
> >= For relational operators > and > respectively
7 == l= For relational = and # respectively
8 & Bitwise AND
9 A Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
1 && Logical AND
12 Il Logical OR
13 2 Ternary conditional Right-to-left
14 = Simple assignment
+= -= Assignment by sum and difference
*= /= %= Assignment by product, quotient, and remainder
<<= >>= Assignment by bitwise left shift and right shift
= A= |= Assignment by bitwise AND, XOR, and OR

= So putting it all together:

void make_subject3(struct Subjectx s){
s—>dept = 8; //or (%s).dept
s=>units = 12; //or (xs).units
strcpy((*s).name, "8.02: Physics 2"); //or s—>name
(*s).num_students = 500; //or s—>num_students

make_subject3(&our_course); //call function on pointer to our_course

printf("ss has %d students and is in Course %d and is %d credits.\n",
our_course.name, our_course.num_students,
our_course.dept, our_course.units);

How Bi16 1S STrucT:
-2+ 1e2s+ aS big 23S Sum of component parts
Ex:

S ey k+yti0o+4 =112 bytes
int units;
char name[100];
int num_students;

Struct notes:

‘no concept of publielprivate

ceannot have Struct uith member Struct
‘manyg wWays Fo initfalr2e:

//declare but don't initialize:

struct Subject our_course;

//declare and initialize:

struct Subject other_course ={9, 12, "9.01: Intro Brain Stuff", 100};

//declare and initialize (named fields):

struct Subject other_other_course ={.dept=1, .units=12,
.name="1.01: Intro Prob/Inference",
.num_students=100};

| Nute:
+C s2ys ‘NuULL” VS nowe

ExERCISES - Wk 3:

> | char digit = ‘7', & 5SS in dec

=Y

int resuvir =digit+0; =55+0:=SS

hello! = 104 +101+108+108+ 11] + 33 =

(unsizs] - RecitaTion

STRuUCT:

‘Sivwi1avr ko CLASS in Pythown but no Funciten, onty vars

rose o, Fo access mewmbers
Struck Soubject 3
i
reruerns size (in bytes) of vaeriables
StTRUCT PoinTERS:
- aveid copymg struct (large; directly modify valve F
dereference pointer With * pefere 2access with ,
("struct. pFr). membe r or Strouct_pir —> membevr

Sizeof: f:inds how blg Something i's

sizeof intz 4 pytes

-)
Vi (3 Y, 3
Return size (IN bytes) of the ariables int, arra str uct, etc

—
char c¢;

char str[100] = "abc";

uint8’t i = 10;

uint8_t *int_ptr = &i;

int arr[10];

printf("%d\n", sizeof(c)); // print “1”
printf("%d\n", sizeof(str));// print “100”
printf("%d\n", sizeof(i));// print “1”
pr‘:mtf(’:"’/ad\n", sizeof(int_ptr));// print “4”
printf(“%d\n", sizeof(arr));// print “49”

string.\h funchkiens:

‘Strlen ceturas length of Stmng (NOT same as s:ize of)

‘Strepy puts Src Skring inte 2 deskination uaiil ‘\o0’
- (an overflow F sizeof (dest)< si2e of (Src) »might touch ofhe
Strncpy (opy up to n chars (more control)
Stricpy Copy uvp o n-l tharacter + ‘'\O'

Strcat concarenatreS R overweites First ‘\0’' of dest with
.can SHIl overflow if tenldest) +lenlsrc) > sizeof(dest)
Strvucat vep +o vtk char

Stencat uvp o n-l char + ‘\O’

needed)

© mewmory

IS} char ofF Src

Strcmp (ompaves Strl B Sér2

=0 > sawme

20> First AdifF char: Skrl’s cthar asc’ > Str2 chav ascic

€O = ISt Skr's Ferst d:FF. char 3scii ¢ 2nd

do: stremplsti s2) == don‘k: siz==S2

Strncemp compares vUp fo i thars

Strcwr Finds Isk octurewnce of character ¢cn String

-returns pointer to ISt otcurence of chawr (wull if not Pound)

- Strrchr Cinds 128+ instance ofF cwar

c StrSkre Finds so C-Strin insid

REVIEW

@

Strtok splitsS Sir into tokens by delimiters

cSelit _chars by sgme-lh:ng

noll.

cin _subsequent call str replaced by

, B = \0/NULL ——
char message[22] = “This is a message!”; [=some non-NULL char _ 1 of scan/chec
= path of scan/checkin
16 0 0 0 B> = otumed pinter ’ ’
FIRST CALL:
char* ptr = strtok (message,”“);
s s s FOURTH CALL:
Thiis s alsitiring 1@
[—— char* ptr = strtok (NULL,“);
4) Returptr z;wrﬂm Iwnmmw:.n 1.) entoring NULL.
ANERNENENEEEDRENE ThisEis@a@string I“mﬁw
2) Sean unth rst™ Romembor tat!
—) Roturpir (324 delimiter or NULL
fleabitridetiotiin H
. This@isHa@string!l
SECOND CALL: —
pir now refrs o this NULL
lorminatod char array!
char* ptr = strtok (NULL,”“);
s o st FIFTH, ETC... CALL:
ThisEis alstiring !l
a 2) Scam amil char* ptr = strtok (NULL,");
Y deumterorNuLL |+ vinNoL 1.) entering NULL means start where left off
ThisEisBal stiring 1l ThisHisBaB@string!l
2) Previously ended in NULL so...
pir now refers to this NULL.
terminated char array!) Rewrptr {7 = NULL
THIRD CALL:
char* ptr = strtok (NULL,“);
1.) entering NULL means start where left off
ThisHisBa string!l
e] 9 Roptaco win uLL

) Roturpr (55
ThisHi sHa@string!l

pirnow refers o this NULL.
char aray!

OTHER STRING Fuacs:

serintf

cSimilar $o prntf, buk prints (nto 2 String vneot terminal
serintF (Str_vaw, ‘Cormat elod olot ofof olos\n’,a,b,c.o);
2toi

‘Converts siring fo int

- expects char avray

Ex: int x= atei (FG1a04");

consé chav?

‘Constant char array

TYPECASTING

Ex: LInt8-t Wiz (uint8_t) messageli];

LECTURE Y: RISC-V ASSEmMELY

GenERAL PurRPOSE PROCESSOR:

Vst of nstructions that can execute uSing +S hardware (3ssembly language)
© 255@mbly lang geis transiated into binary (mackine cwde)

-tells us e xacH Steps +hat processor CanieS owt

Let's Sum an Array

Assume we have an array arr with 10 integers starting at
memory address 0x700.

Assembly Language Machine Language (Code)
addi x5, x0, 0 0x00000293 thx, that's
addi x6, x0, 0 0x00000313
addi x7, x0, 40 0x02800393

loop: 0x0072da63 | —
bge x5, x7, end ; 0x7002a403
Iw x8, 0x700(x5) |~ 0x00830333
add x6, x6, x8 [0x00428293
addi x5, x5, 4 | Oxf1ffosf
jal x0, | . .
e:]?j_x G Direct translation
- (same level of detail)!

Assembly is for the programmer, machine code is for the
Processor.

High Level vs Assembly Language |

High Level Language Assembly Language
1. Complex arithmetic 1. Primitive arithmetic ‘
and logical operations and logical operations
2. Complex data types 2. Primitive data
and data structures structures — bits/bytes
3. Complex control 3. Control flow
structures - conditional instructions
statements, loops and |4, Designed to be directly
functions implementable in
4. Not suitable for direct hardware
implementation in
hardware tedious programming!

ASSEMBLY LANG: Sequence of inStructoonS (wh ek executl in sequent) orde, wuntlss control Flow
inStruction s executed

- math/log'e 0PS, CompPariSons, jumps, memory 2access

INSTRUCTION SET ARCHITECTURE (1SA) (ontract blt sofiwace & hardwace
- functional def. of ops 8 Siorage lecahons
-precis@ oef. of how Softnare can /nvoke/2ccess fhewm
Cisc: (compiex inStructon set computer) 12rger inSiruck’on Set w/ more optrons/ Operation variants
ccan have many ‘nsiructions, more compellx,; fewer ’asirucheons
RISC: (reduced) sSmaller w/ only LIFR min;mum opS

-basc, smallen set, wmay weed more insicuctrans (but Simpler)

c€2ch regrster =32 bits wode

= We'd like to add two numbers from memory locations Ox7E8
and 0x7EC and store the resulting sum back in 0x7EC.

= In a hypothetical CISC architecture you might be able to do
this in one instruction:

ADDMR 0x7EC, Ox7E8

“add contents stored at memory address Ox7E8 to contents
stored at Ox7EC and put the resulting sum into Ox7EC”

= With a RISC architecture, this might look like:

addi x10, x0, Ox7E8 # x10 <- Ox7E8 + 0 = Ox7E8
Iwx11,0(x10) #x11 <- Mem[x10]
Iwx12,4(x10) #x12 <- Mem[x10 + 4]

add x11, x11, x12 #x11<-x11+x12

sw x11, 4(x10) # Mem[x10 + 4] <-x11
RISC-V ISA:
‘I’ base int, ‘M’ x 8 = 'C' compressed instruck, F°’
ours: base nt 32-br'd vaeciant
Registers vs. Memory
= Both store information
Registers ‘ Memory
+ Expensive » Cheap
« Physically large « Very dense/small
* Quick to access « Slower to access
« Actually in the « Further away/separate
computer itself from the computer.
= Conclusion for most computers - compromise:
= Have a small set of registers (maybe twenty or thirty) that
you use as much as possible as temporary variables
= Use memory as rarely as possible!
REGISTERS: MEMoRY:

32 qeneral purpose *O -33I (¥o = o)

Register File
Address

X0 0x00000000 N
x1 ox0
x2 ox4
o0x8
32-bit “words” oxC
0x10
o0x14

x31

x0 hardwired to O

2 D' singel/dovl - precision

©32 bits wede (1 waord)

-adodresses =32 bofS

Main Memory

321 |e

32-bit “words”

(4 bytes)

Fe

RISC-V INSTRUCTIONS:
Instruction SEta.x Dscrigtion Execution

LUI Tui_rd, luiConstant Toad Upper Immediate reglrd] <= luiConstant « 12 computationdl
JAL jal rd, label Jump and Link reglrd] <= pc + 4
pc <= label
JALR Jalr rd, offset(rs1) Jump and Link Register reglrd] <= pc + 4
pc <= {(reglrs1] + offset)[31:1], 1’b@}
BEQ beq rsi, rs2, label Branch if = pc <= (reglrs1] == reglrs2]) ? label: pc + 4 control| Plow
BNE bne rs1, rs2, label Branch if # pc <= (reglrsi] != reglrs2]) ? label: pc + 4
BLT blt rsl, rs2, label Branch if < (Signed) pc <= (reglrs1] <s reglrs2]) ? label: pc + 4
BGE bge rsl1, rs2, label Branch if > (Signed) pc <= (reglrs1] >=; reglrs2]) ? label: pc + 4
BLTU bltu rsi, rs2, label Branch if < (Unsigned) pc <= (reglrsi] <, reglrs2]) ? label: pc + 4
BGEU bgeu rsi, rs2, label Branch if > (Unsigned) pc <= (reglrsi] >=, reglrs2]) ? label: pc + 4
™W Tw rd, offset(rsiy Toad Word reglrd] <= memlreglrsi] + offse
SW sw rs2, offset(rsl) Store Word mem(reglrs1] + offset] <= reglrs2] P
ADDI addi rd, rsi, constant | Add Immediate Teglrd] <= reglrsi] + constan lo ads /stores
SLTI slti rd, rs1, constant Compare < i (Signed) reglrd] <= (reglrs1] <; constant) ? 1 : @
SLTIU sltiu rd, rs1, constant Compare < i (Unsigned) | reglrd] <= (reglrs1] <, constant) ? 1 : @
XORI Xori rd, rsi, constant | Xor i reglrd eglrs1] - constant
ORI ori rd, rsl, constant Or i reglrd] egrs1] | constant
ANDI andi rd, rsi, constant | And Immediate reglrd] eglrsi] & constant
SLLI slli rd, rs1, shamt Shift Left Logical Immediate reglrd] eglrs1] « shamt
SRLI srli rd, rs1, shamt Shift Right Logical Immediate reglrd] eglrs1] », shamt
SRAI srai rd, rs1, shamt Shift Right Arithmetic Immediate reglrd] eglrs1] »s shamt
ADD add rd, rs1, rs2 Add reglrd] <= reglrs1] + reglrs2]
SUB sub rd, rsi, rs2 Subtract reglrd] <= reglrsi] - reg(rs2]
SLL S11 rd, rsi, rs2 Shift Left Logical reglrd] <= reglrsi] « reglrs21(4:0]
SLT sit rd, rsi, rs2 Compare < (Signed) reglrd reglrsi] <, reglrs21) 2 1 : 0
SLTU sltu rd, rsl, rs2 Compare < (Unsigned) reglrd reglrsi] <, reglrs2]) 2 1 : 0
XOR xor rd, rsi, rs2 Xor reglrd] <= reglrsi] - reglrs2]
SRL sl rd, rsi, rs2 Shift Right Logical reglrd] <= reglrsi] », reglrs21(4:0]
SRA sra rd, rsi, rs2 Shift Right Arithmetic reglrd] <= reglrsi] », reglrs2][4:0]
OR or rd, rsl, rs2 Or reglrd] eglrs1] | reglrs2]
AND and rd, rsi, rs2 And reglrd] <= reglrsi] & regl(rs2]

‘Computatonal: Brithmetre / logicadl ops on registers
- loads & stores: move dara blt regqisters & main mem.

s Control flow: change E€xecuhon order of inStrouctions (condilionals, Fonctien Calls)

Register- add, sub slt, sltu and, or, xor sll, srl, sra

Register

Register- addi slti, sltiu andi, ori, xori slli, srli, srai
ComPuTATIONAL: [mmediate

REGISTER- REGISTER: Oper wvd, vsd, rs2
-2 Source operand regrsters (rsi, rs2) €can be Same
c1_destination register for resoult (rd)
Operations (oper):

add, sub slt, sltu and, or, xor sll, srl, sra
= add x3, x1,x2 #x3 € x1+x2
= sltx3, x1, x2 #Ifxl<x2thenx3=1elsex3=0
= andx3, x1,x2 #x3 € x1&x2
= sllx3, x1, x2 #x3 € xl<<x2

(;nd.‘cared wl 0
REGISTER-IMMEDIATE: opln rd, rsi, constrant
‘| Source operand comes From register (rsa)
-1 Source operand comes fFrom constant (constant) 12 bots (S for shef4)
-l dest'natrion rég’ster ("d)

addi slti, sltiu andi, ori, xori slli, srli, srai
= addix3, x1,4 #x3 € x1+4
= sltix3, x1,4 #Ifxl1<4thenx3=1elsex3=0
" andix3, x1,4 #x3 € x1&4
= sllix3,x1,4 #x3 € x1<<4
* No subi, instead use addi with negative constant.
= addix3, x1, -4 #x3 € x1-4

* 21l vaives are binary!

NOTE: 199/cal vS. Arithmetsc right Shi fts
= Suppose: x1 = 00101 = Suppose: x1 = 10101

x2 = 00010 x2 = 00010

srl x3, x1, x2 00101 srl x3, x1, x2 10101
00010 01010

00001 00101

sra x3, x1, x2 00101 sra x3, x1, x2 10101
00010 11010

00001 11101

Logical right shift: Shift in Os.
Arithmetic right shift: Shift in value of most significant bit.

EX:

= What if we wanted to put 0x12345678 into x2?

= No problem!

addi x2, x0, 0x12345678 # x2 = 0x12345678 + 0

#x2 =0x12345678

= Actually, there is a problem: [P P>

= addi can only encode a 12 bit con t

= 0x12345678 is more than 12 bits
= The above code would not compile.

LOAOD UPPER imMmEDIATE (cuLi): lvi rd., luiConstant

- D2PP] ! of 'S e~

: Supports putting n Constants larger than 12 b'+s into reg'sier

lui x2, 0x12345 # put 0x12345 into upper 20 bits of x2

x2 = 0x12345000
addi x2, x2, 0x678 # x2 = 0x12345000 + 0x678

#x2 = 0x12345678

= Let's do a=((b+3)>>c)-1 Let’'s Sum an Array
1. Break up complex expression into basic computations. Assume we have an array arr with 10 integers starting at
= Our instructions can only specify two source memory address 0x700.
operands and one destination operand C Program Assembly

2. Computational instructions can only access registers,
not memory.

= Assume a, b, c are in registers x1, x2, and x3 int arr_len = 10; addi x7, x0, 10
respectively. Use x4 for temp0, and x5 for temp1. |While(i<arr_len){
int val = *(arr + i);
tempO=b +3; addi x4, x2, 3
templ = temp0 >>c; sra x5, x4, x3
a=templ-1; addix1, x5, -1
LOADS 2 STORES: only inSiructionS +hat interact wl! memory

LoAD: Iw rd, offset (rsa)

‘read 32-bit valuve siovred C memory adoy

= |w x1, 0x4(x0) #x1 € Mem[x0 + 0x4]

- base addy: rsi1 stored in reqiste~
= |w x2, 0x8(x0) #x2 € Mem[x0 + 0x8]
-offset: offset (2-bit constant
cbase + offset wmust b wmuliple of 4!
- pot 32-bit value in register rdl
STORE: w_r (X rs1 2k:ng £r Sker 8 putbing into wem
ctake 32 -bit value n regster rs2 and Store C mem adely rsl + offset
- b r +or n ister
- offFset offset 12-b'+ constant
= sw x3, 0x10(x0) # Mem[x0 + 0x10] < x3

c base+ offset must be mulple of ¢

a=b+c lw x1, Ox4(x0)

Assume: lw x2, 0x8(x0)
= ais at address 0x10
* b is at address 0x4 add x3, x1, x2
= cis at address 0x8 Sw X3, 0x10(x0)
Register File Main Memory
Address ;; 0
« | 0e00..000 oxo| | | |
x1 5 ex4 b=5
x2 9 ox8 c=9
x3 14 ‘\OXC
x4 exle | ~ a= 14
X5 ox14
32-bit “words” 32-bit “words”
C Program Assembly
inti=0; addi x5, x0, 0
intarr_sum =0; addi x6, x0, 0
int arr_len = 10; addi x7, x0, 10

while (i < arr_len) {

-
arr_sum +=val; \’ Iw x8, 0x700(x5)
i++; add x6, x6, x8

} addi x5, x5, 1

ConTROL FLow:
- 2ssembly lang {ranslated nto machine lang & sStored in mem. Ffor processor +o read as execoutes
* RISC-V _processor has specral regqister caned program counter (ec).

—holdlS mem. 2addy of current inSiruction

- processor uses #his addy to Fekch instcucton Ffrom mem. then deccdes & executes i+

Address ° = Processor fetches 32 bits stored
ox0 0x00000293 at address 0x8
ox4 0x00000313 = Processor interprets those 32
ox8 0x02800393 bits as an instruction.
OxC 0x0072da63 . Proces'sor executes instruction.
oxto | 0x7002a403 * pcis updated

- 2Ssembly B31W3YS ontinuls to wnexi insiruciion (Pcz=pPCc+YH) UNIBSS Otherwise toid by
Control Fflow inSirucéon (PC—=P¢+ o fFfse+)

ConoiTionAar BRANCH: branch jump owniy f condition s met

LACON DITONAL TUMP: 3lways jome

2llows us to creale cCownd:tional (‘f/eise statements) € [(ocops (wiie, for)

LAGBELS: give Convenent mnames +o Inmes of instructions

-takes wo seace in memory (no s:ze)

some_code: addi x5, x0, 521 * some_code refers to

addi x6, x0, 177 addi x5, x@, 521
some ot'her' code: = some_other_code refers

lui x2, 0x12345 to the instruction

X immediately below it:
addi x2, x2, 0x678 lui x2, Ox12345

ConoiTon AL RBRANCH: Comp rsl, rs2, label
-fieSt per Forms Complarison ‘o oderermie iF brancw +3keu or wnot

"if _Troe, branch s faken (jume +o lakel) & updares pc accerdingly

| Instruction| beq | bne | bit | bge | bitu | bgeu |
< > < >

[yl == I=

= beq x1, x2, label #1f x1 == x2, jump to
label. Otherwise, go to
next instruction.

Conditional Branch Example

C Code: Assembly Code:
if (a <b){ bge x1, x2, else
c=a+l; addi x3, x1, 1
}else { beq x0, x0, end
c=b+2; else: addi x3, x2, 2
} end:
Assume:
x1 =a
x2 =b
x3 =cC

LNCONOITIONAL BRANCH: jal rd, label

Y ¢ 1abel

-pc wvpdatres +o be adds of instroctron

‘ink Skﬂted in nea.‘sker "J

unconditonal jump via register+iink
’

ANOTHER: jalv rd. offse+lrsi)

m i ‘on bl S rsl + +

crsl s reqss+er, offset i nStant

‘c3n _jume o aduy 32 bi+ addy

Assume we have an array arr with 10 integers starting at
memory address 0x700.

C Program Assembly

intarr_len = 10; addi x7, x0, 40

TITANSTRUCTION ENCODING:

e m aixn_ksges :
MIT 6.191 (6.004) ISA Reference Card: Instruction Encodings
31 25 24 20 19 15 14 12 11 7 6 0
funct7 ‘ 52 rs1 funct3 rd opcode R-type
imm([11:0] sl funct3 rd opcode I-type
imm[11:5] | 52 rs1 funct3 imm([4:0] opcode S-type
imm[12[10:5] | 152 sl funct3 | imm[4:1[11] opcode B-type
imm([31:12] rd opcode U-type
imm[20[10:1]11[19:12] rd opcode J-type

R-type: Register-Register Instruction Format

31 25 24 20 19 15 14 1211 76 0

‘ funct7 \ rs2 ‘ rsl |funct3‘ rd ‘ opcode |

Some parts are found in the ISA:

= funct7, funct3: encodes the function (add, and, etc.)
= opcode: encodes the instruction type (register-register)

Some parts come from the instruction:
= rs2: source register 2 (5 bits) use ISA to

= rsl: source register 1 (5 bits) determine which
= rd: destination register (5 bits) register is which!

I-type: Register-Immediate Instruction Format

3

1 76 0
‘ imm[ll:O]’ rsl| funct3‘ rd ‘ opcode

20 19 1514 1211

Some parts are found in the ISA:
= funct3: encodes the function (addi, andi, etc.)
= opcode: encodes the instruction type (register-immediate)

Some parts come from the instruction:
= imm[11:0]: immediate (12 bits)
= rsl: source register 1 (5 bits)
= rd: destination register (5 bits)

If we're in a Data Region of
Memory

= Maybe the value at Ox10FAO is an unsigned int:

Address: Data:
0x10FAO ObOO1000001001000000000010?10011

23) 220 piace: 512’s place:
i place: p : 1
ﬁ% 1 1 128's place:
1 2’s place:
= Sum it all up... 16—5!;“& !
1’s place:
=546308755 s
INSTRUCTIONS Vvs. pPATA:
Ox10FA8 0b00000000010100110100001010110011
% ’
Xor rd =x5
rs2 =x5 reg-reg

Bitwise xor x6 with x5 and put back into x5

= So this would get interpreted by the computer as:
Address: Data:

0x10FAO 0b00100000100100000000001010010011
Ox10FA4 0b00001011000100000000001100010011
O0x10FA8 0b00000000010100110100001010110011

addi x5, x0, 521
addi x6, x0, 177
xor x5, x6, x5

ExERcCISES:

Ex: Oblot xor ObOIl > ObLIIO » ODx0b6

logical
Ex: Oblov srii 2 - Ouloly»> 2 -» Oboo! = |

K Ex: Wi x4 7 = Dx00007000 & adds 12 binary 0's (3 hex OSs)
addi x1, x0, 7 X!=*7
Ex: addi x2, x0, 2 *X2*2
blt x1, x2, L1 if V<7 go bo LI X
addi x2, x2, 4 X2= 2+4:6
L1: addi x2, x2, 5 X2 = 04S=1l - Ox8

@ Ex: | addi xI, xl, =

imm = -1 = Finol binary = complement (invert)

variable
WMo 1tto + 1 = ittt 10
table add
x| - 0b000OO!(Wi-1l-Nl). 00001 _.000.0000I-00l00II

Ex: | Oxt2341234: DbVO0O.-090666. i1l 000l Olol_ (000 0N 0O
4 $ uo -

imm[12) =0

imwm[i0o:$] 000000
imm["‘-|:|=_looo
Emml—llj 0

iMv 00. 000000-100D0
Cyurr+ imm = Oxla3iayy

Ex: | binary 3 inStruction

0b00000000_10111001_10001011_00110011

° rs2:=1 rsiz1q 000 rdz6+16
=22

Ex:| bge x2 x3 label

00010 00811
Y inst after » U bits -4 = 16 00000000 IDOOD
12 | e —_—
4q:1 ©Oth
O0.000000_ O00I| _ 020 0-'21 _ 1000_0D. lilcooIl
e
2
.
EX. Sw %6 8(x2) imm: 129 00ocooolo ocoo
rs2 s\ 2 — s bo—)
©0010 OOlIO 8 : “:0

000000!1..00110. 000t0.. OIO. 00000 - 0I08011

ex: 0b01000000_10001000_10000010_00110011

—t N
Sub rsez rsi vd Sugé
x8 %17 xY

- sub x4, %17, x8

0b00000101_01101001_10110011_10010011

E%X: —_— S Slkiv %72, le, 86
imm [i1:0] Xesl o o
6416 to4 X9 Seriv ol
e ObJO110011_10140‘.0101_&0&9;101_1@001; = SHi %27, xI!, Oxb2a
i imm[0u:0] st :::o
—— T' X277 giqeed: lotosiiiogo

— — A

3 W: 01001100010 | +|
010011009110

)

Oxb3a 244 +64 +128 41029
2'°42%206 40

(41227257 - recitation

ASSEMBLY:

ven] w C

REGISTERS vS. MeEmoRry

.

in C, 3l _varsS are in me y

c reqi rS = +n [er

%02 x31 (0231)

‘%0 (s 3always 0 (hardwired)

INSTRULTION TYPES:

s Computationgl

-lodds 8 stores (move reg/s+ers mgmrg)

.control Flow (causes PL to jome around)

MPOTAT(AL:

‘Lotz 10ad upper immed:ate: set vpper 20 bits blc immed:ate outy 2Uows 12 biks

LoAD TORE:

LABELS:

-+akes ve no sepace .

- l2bel ('nes of imSiructons

- used Wwith contrel Flow inStruckions

ConTRrOL FlLOW:

+ Unconditional branch in:

== v
structions

W |nstructions round the in

0 ump a
control Fl omueze i TPC) t0 P
: the prodr

trol flow: make ¢ jons bel
: Gondtons e eastrt, oG 800, 0 the flow
o Con - comparison_opera ison is met, el = a2,

e
isol e else continu
o Fomat: comPat sl lifthe compariSonth | 1 “end if @

end# Jump

u Willjump to the 1 @
I =

s beq al, 22
« == =

[. IR onsigned

structions ;
Fomat: operation dest_register, label or offset(register1)

% ot .

- w‘“‘umpmmelunwndmonauy d store the checkpoint (where to come

= jal at, end# jump to the label an
back to i.e. pc + 4) in al

DEBUG:

rCSbreak @ I1'nes ofF inkeres+

c €an see reg’sterg, memory erc

Lu128/25]) - CompiLinG CoDE 8 IMPLEMENTING PRocEOURES

Components of a RISC-V Processor

]) Main Memory
Register File o~ addresses in bytes

x0 holdls Address (, ¢, (chunksg of 4)
x1 | 1ee1te....0 2ddy of i
x2 next Holds

;| 32-bit “words” i'h{"b'i: program

: [progron counter] 3¢ and data

x31
1 e
+he
- :av_npu}zh'ons/\/
| Arithmetic (operates on

Logic Unit registers)

RISC-V Instruction Types

= Computational Instructions executed by ALU

1e€+

= Register-Register: oper rd, rsi, rs2
+ Register-Immediate: oper rd, rsi, constant (12-bit) = OWly have totdl of 32 -bits, have 12 bits
= lui rd, luiConstant (20-bit) se{.s s;s“ ex+en ped

= Loads and Stores can get

; 32-bit value
veading val. lu rd, offset(rs1) with these Ex: LULIIIILLN] = =1

wriking

v3l= sw rs2, offset(rsl)
= Memory address = Reg[rs1] + sign_extend(offset) ot = <

branch ¢

—alw2y4ys bran

. . e
= Control flow instructions extend
£ ...« Conditional: comp rsl, rs2, label

‘¢l = Unconditional: jal rd, label and jalr rd, offset(rsl)wgq‘ offset
= Pseudoinstructions
= Shorthand for other instructions

 PSEVDOINSTRUCTIONS:

Pseudoinstructions

= Not “real”, but they make our lives easier. Can use freely!
= They are converted into actual RISC-V instructions when

being assembled into machine code.
MIT 6.191 (6.004) ISA Reference Card: Pseudoinstructions

Description Execution

T Load Immediate reglra] <= TiConstant
Move reg(rd) <= reglrs1] + 8

Logical Not reg(rd) <= reglrs1] -1
Arithmetic Negation reglrd) <= @ - reg(rsi]
Jump. < Tabel
“Jump and Link (with ra) reglral <= pc + 4

pe <= label

Jump Register
Jump and Link Register (with r2)

Cxx]
= reglrs1] & -1
= reglral

= (reg(rs1] >, reglrs2)) 7 label pc + 4
= (reglrst

= (restr
= (restr
= (restr

= (restr
bltz rsi, Tabel = (reglr
bgez rs1, label = (reglr
bgtz rs1, label Branch > 0 (Signed) < (reglr:
blez rs1, label Branch < 0 (Signed) < (reglr:

bnez rs1, label

+ Shorthand

- converted 4o achu -V __inS¢ructions

psevdo: assem:

Ex: My x2, x| addi x2, xl, o
ble xi,x2,1abel bge x2,x\,labe|

lo 1 h :
(22 bits)
smalner #: W x2, 3 > addi x2, %0, 3
r 4d: i %3, Ox4321 loi %3, Oxy
Wi & addi 2ddi x3, x3, O %32
(04 bits) = takes vp 2 words in mem
DATA VS. INSTRUCTION MEM
-different sechons of memory
cif pro t'ons
cdown’t overwete!
* PC keeps 4rack of wnext inStrouchon
= The program counter (pc) register keeps track of the
address of your next instruction
= Default (non control-flow instructions): pc = pc + 4 é— consecurve locatons in meém. areé H4 bytes apPart
= Control flow instructions might update pc by a different
amount.
.= i ».=0x0
S"O"ed - blt)fl,xz, label #if x1 <x2: pc = 0x8 N R
e “Jﬂ 0x0 Iaz:ﬁlxl, x1,1 # else: pc = pc +4 Add"::: z =
X addi
Iw x3, 0x100(x0) —L. #x3 = 0x12345678 zx: ”
g geing +o Oxi0O, oxC
@ Oxtoo, word 0x12345678 getting data oxto
Ox 12345678 vai, poutrking
:s v 4&'& ..“‘_° *3 ox100 | 0x12345678

Ex: Som arvay
Assume we have an array arr with 10 integers starting at
memory address 0x700.

C Program Assembly

addi x7, 0, 40 Array lew (S 10 -4 =4O bytes 2park in mem.

m
N
> memory addy + bytes offset (i)

iner. by 4 bytes

Ex: conditional Sratement

C code 1. Compile expr into xN
if (expr) { 2. ant_ﬂitional branch instruction that
if-code; will jump to else when expr is 0.
Yelse { 3. Compile if-code into assembly.
else-code; 4. Add unconditional jump past else
} branch.
5. Compile else-code into assembly.
Ex:
slt x12, x11, x10
if (x>y) { beq x12, x0, else
X=X sub x10, x10, x11
el jendif & unconditionally jump +o Skip €1S€ portion
)y B else:
We'll use x10 for x and x11 for y sut.) ?(11' x11, x10
endif:

ex: diff. way-
C code
- 1. Conditional branch instruction that
if :(feXP;){ will jump when the opposite of expr
lj-coae; is true.
}else { 2. Compile if-code into assembly.
) else-code; 3. Add unconditional jump past else
branch.
4. Compile else-code into assembly.
Ex:
if (x>y) { ble x10, x11, else
X=X-Y; sub x10, x10, x11
yelse{ j endif
}y A else:
subx11, x11, x10
endif:
EX: wnile loop
C code 1. Conditional branch instruction that
will jump past loop body when
while (expr) { opposite of expr is true.
loop-code 2. Compile loop-code into assembly.
} 3. Add unconditional jump to top of
loop at end of loop-code.
loop:
beq x10, x11, endloop
- ble x10, x11, else
while (x1=y) { sub x10, x10, x11
if (x>y) { jendif
X=X-y; Ise:
Yelse { e;et; x11, x11, x10
y=y-x L & control Flow inStructions
} endif Can be &Silg-- .
jloop . .
} endloop: instead of having 2...
dif F'_ C code 1. Compile loop-code into assembly.
=3y 2. Put a conditional branch instruction
while (expr) { Iafter /orz:p-code tr)at jumps to top of
loop-code oop when expr is true.
} 3. Before starting loop, jump to that
conditional branch instruction.
j compare
while (x 1=y) { loop:
if (x>y) { ble x10, x11, else
X=X-y; sub x10, x10, x11
}else { jendif
y=y-X; else:
} sub x11, x11, x10
} endif:
compare:
bnex10,x11,100p ¢~ ontly one control flow!
PRocECULRES: gcd

int ged(int a, int b) {

= Procedure (a.k.a. function or
subroutine): Reusable code

fragment that performs a
specific task
Single named entry point

Local storage
Returns to the caller when

.
= Zero or more formal arguments
.
.

finished

= Using procedures enables
abstraction and reuse
= Compose large programs from

collections of simple procedures

int x = a;

inty=b; €-calee
while (x !=y) {
if (x> y) {
X=Xx-y;
} else {
y=y-x
¥
return x;

bool coprimes(int a, int b) {
return gcd(a, b) == 1;

coprimes(5, 10); # false
coprimes(9, 10); # true

«caner

CALLER: procedure +hat called other procedure
CALLEE: procedure that was called by caller
* 2 procedure can be both calle~r & callee!

How +o transfer cowntrol to callee & back +o caller?

- register x| (ra) used +o hold a procedure’s RETURN AODRESS

-once Finished, callee will

Jump and Link

use ra to jump back to Corvect inSiruchkieon within callev procedure

jal: Unconditional jump and link
Format: jal rd, label
= Jump to instruction at label

= program counter (pc) updates to be address of that
instruction

= Link: stored in register rd «— NEW THIS WEEK

= The link is the address of the instruction after the
jal instruction (rd = pc +4)

= This is how we remember where we came from!

jal x1, label 1. Jump to instruction following
addix7, x7,1 label
2. x1 holds address of addi
instruction

= jalra, sum
= When calling a procedure, we store the link in ra

proc: sum:

[0x100] jal ra, sum # ra = 0x104 j??

[0x678] jal ra, sum # ra = 0x67C

Equivalent pseudoinstructions:

How can the callee use ra
= jalsum = call sum

to return back to the
caller?

Jump and Link Register

jalr: Unconditional jump via register and link
Format: jalr rd, offset(rs1)
= Jump to instruction stored at address Reg[rs1] + offset

= program counter (pc) updates to be address of that
instruction

= Link: stored in register rd «— NEW THIS WEEK

= The link is the address of the instruction after the jalr
instruction (rd = pc +4)

= This is how we remember where we came from!

jalr x3, 0(x1) 1. Jump to instruction at memory
addix7,x7,1 address in x1
2. x3 holds address of addi
instruction

How to 4ransfer conirol back +o caller?
= jalr x0, O(ra)
= ra indicates where the program should return to

= As long as sum was called using jal ra, sum or equivalent,
and ra hasn’t been overwritten since.
= Store link in x0

= Effectively discarding it... we have no need to
remember that we came from the end of a procedure.

ro remeémbers veturn addy

from procedore cal)
proc: sum:
[0x100] jal ra, sum # ra = 0x104 €& pvtting jalr x0, O(ra)
into vra
[0x678] jal ra, sum # ra = 0x67C Equivalent
pseudoinstructions:

= jrra = ret

Sommary:

Summary: Transferring control
between caller and callee

= To call a procedure: jal ra, label
= orjal label
= Or call label

= To return from a procedure: jalr x0, 0(ra)

ASwitching contol back & forth bl

= Orjrra
= Orret
proc: sum:
[0x100] jal ra, sum # ra = 0x104 jalr x0, O(ra)

[0x678] jal ra, sum # ra = 0x67C

How #o communcad+e arguments 8 return valves?
-we need rules (caliing conveniion)

CALLING ComnvENTION: rules for registev ousage 2dcroSs procedouves

- / :
Eunction 2ras c@turn vals a0 to a7 x10 to x17 Function arguments
a0 and al x10 and x11 Function return values

-Ist arg in a0, 2nd 3l,...

-calee can €Eind thewm!

= The caller is responsible for putting function
arguments in the necessary registers before calling
a procedure.

- - - . i responsible for
int coprimes(int a, int b) { ;2;?(::]895 surz 20=a al=b
== . - dr -
}retum ged(@ b) == 1; before calling gcd...
int ged(int x, int y){ ... S0 that gcd can assume
a0 =xandal =y
}

- First return val in 20, second 2l ...

- calnee respownsible Ffor Putting return vals in necessary registers
= The callee is responsible for putting return values
in the necessary registers before returning.

int ged(int x, int y){ ged responsible for putting
val in a0 before returning...
return val;

}

int coprimes(int a, int b) { ...50 coprimes can assume
return gcd(a, b) == 1; ged(a,b) will be in a0, ready

} to use

How +o (et procedures use more Storage #twan cawn €+ in registers?

-3lloc3te special Selton of memory (stack) +hat isnt For regrsters
RISC-V _STAck:

‘grows down from wgh-dlow addys (LiFo)

‘Sp points to Vrop of stack

cPpoSh & pull ocperakeons

- MmuSt make room before pPushing , must meve pPdr aft+er polling

calle~/c3allee

= Two operations: push and pop

= Push: put something on top of stack
addi sp, sp, -4 # allocate space
sw al, 9(sp) # put element on

= Pop: take something off top of stack
1w a1, o(sp) # take element off
addi sp, sp, 4 # deallocate space s
Stack ptr no longer P"S')
to val we just+ removed

-3ny procedure can use S+ack, bout before returning, moust pout Stack

- Sp must be reset +o valve that it was @ beginning of procedure

ACTIVATION RECORO:

-holds 3ll storage wneeds of procedure that do weot Fit

- dctivation records g0 on stack (LiFo)

-Stack frame: Corvent procedure’s actvation

What ¢ caller & callee need +o use s ame

record dimays G

reqister?

back how ¢+ was
in_vegssters
top ofF stack
proc C
proc B proc B proc B
‘procA ‘ proc A proc A proc A ‘procA ‘

-RISC-V c2lling conventions specify roules For Sharing

= If a register will (potentially) be overwritten across a
function call, its value must be saved on the stack.

= The caller procedure is responsible for saving some

registers...
= ...and the callee procedure is responsible for saving
others.
= RISC-V ISA tells us which ones are which! one °"P"ke_‘:°“"e"‘
1)

Registers Symbolic names Description Saver (wastefol both)
X0 zero zero
x1 ra Return address Caller
X2 sp Stack pointer Callee
X3 2P Global pointer —
x4 tp Thread pointer —
X5-x7 to-t2 registers Caller
X8-x9 s0-s1 Saved registers Callee
x10-x11 ae-al Function and return values Caller
x12-x17 a2-al Function arguments Caller
x18-x27 s2-s11 Saved registers Callee
x28-x31 t3-t6 Temporary registers Caller

Caller-saved Registers (aN, tN, ra) - assomed +o not be preserved

Registers not preserved across a procedure call.
= The callee can use them freely
= The caller doesn’t know what registers the callee will use
- must assume it'll use them all.

If the caller needs a caller-saved register’s value after
the procedure call, it must:
= Before calling the procedure: save the register’s value on
the stack.
= After returning from the procedure: restore the old value
from the stack before next using the register.

Any callee can use these registers freely because it can safely
assume the caller will save any register values it will need.

Callee-saved Registers (sN, sp*) —— 1s

Preserved across a procedure call!
= The caller can assume that the register’s value will be the
same before and after the procedure call.

If the callee wants to use a callee-saved register, it
must:
= Before using: save the register’s value on the stack.
= After using: restore the old value from the stack before
returning to the caller.
*The stack pointer (sp) doesn’t go on the stack, just needs
to be reset to it’s original value.

Any caller can safely assume that these register values will be
“untouched” because the callee will make sure to restore them to
their original state before returning.

AacrosSS pProcedoure calls!

PRESERVED quz ranteed

2crossS calls

conventon:

C3lling

‘k-vregisters (lgmeerarg-nef guaranged o be evesgrved)

rS-r€gisters (saved- 3uaram-ced Preservation

Symbolicname | _Registers | __Description | Saver |

a0 to a7 x10 to x17 Function arguments Caller
a0 and al x10 and x11 Function return values Caller
ra x1 Return address Caller
t0 to t6 x5-7, x28-31 Temporaries Caller
sO to s11 x8-9, x18-27 Saved registers Callee
sp X2 Stack pointer Callee

agp x3 Global pointer e

tp x4 Thread pointer ---

zero x0 Hardwired zero ===

Let’s put this all together

Caller: (vse Freely) Callee: (ereserved)

= Saves original values of
sN registers on the

= Saves any aN, tN, or ra
registers whose

stack before using
them in a procedure.

values need to be
maintained past the

Must restore sN
registers and stack

procedure call on the
stack prior to the

pointer when done
using them, before

procedure call
Restores them before

using them again exiting procedure.

after returning from
the callee.

Ex:

callee-saved

= Implement f using
s@ and s1 to store

int f(int x, int y) {
return (x + 3)[(y + €x123456);

Stack contents:

intermediate values
.F.

Before call to f

addi sp, sp, -8 # allocate 2 words (8 bytes) on stack
sw s@, 0(sp) # save s@

7'sw s1, 4(sp)

save sl
addi s@, ae¥ 3 ~x (Ist ret)
1i s1, ox123456

reverses

N
T —

add s1, a1, si 7R[Sp]

or a@, so, sl

NS

1w s@, o(sp)
1w s1, 4(sp)
addi sp, sp, 8

restore so
restore si
deallocate 2 words from stack

(restore sp)

During call to f

]
]
Saved s0
Saved s1

3“5§h:n
avove
Stack
ptr S
Frash

After call to f

To—

R[sp]—

ret return Stack how i+
wWasS before
Ex: | caner-saved
Caller Callee
int x = 1; int sum(int a, int b) {
inty = 2; return a + b;
int z = sum(x, y); }
int w = sum(z, y);
not ~ 1i ao, 1 sum:
what callee ded. 1ial, 2 add a0, a0, al
addi sp, sp, -4 ret

caller most

Save | ownte
Stack & reste

| 26+tevr +he
procedure c2l

sw al, 4(sp) # save y
jal ra, sum
a@ = sum(x, y) = z

Why did we save a1?

>re Callee may have modified

al (caller doesn't see

1w al, 4(sp) # restore y N S
implementation of sum!)

jal ra, sum

Why didn’t we save a0?
We don't need the original

a@ = sum(z, y) = w
addi sp, sp, 4

value after either procedure
call. (ne need to save)

nested pvrocedoures

= If a procedure calls another procedure, it needs to
save its own return address

= Remember that ra is caller-saved

= Example: intcoprimes(inta, int b){

return ged(a, b) == 1;
}

coprimes:
addi sp, sp, -4

sw ra, O(sp)

call gcd ¢~ overweites ra # overwrites ra
addi a0, a0, -1

sltiu a0, a0, 1 restores ra

Iw ra, O(sp)
addi sp, sp, 4
ret ¢ jumping +o ra. # where will the program
return to?
Compuking with | ructures:

= Suppose we want to write a procedure that finds
the maximum value in an array a[].

= The array is too large to be stored in registers

= How do we pass the array a[] as an argument?
= Pass the base address (pointer to array) and the size of

the array as arguments Gen)

Just like we’ve been doing in C!

Finds maximum element in an
array with size elements
L int maximum(int *a, int size) {

int max = 0;
for (int i = @; i < size;

i++) {
if (a[i] > max) {
max = a[i];

}

return max;

}

int main() {
int ages[5] =
{23, 4, 6, 81, 16};

int max = maximum(ages, 5);

}

main: 1i a@, ages

1i a1, 5
call maximum
max returned in a@

ages: 23
4
6
81
16
int main() {
int ages[5] =
{23, 4, 6, 81, 16};
int max = maximum(ages, 5);
}
Finds maximum element in an maximum:
array with size elements mv 1@, zero # t0: i

int maximum(int *a, int size) {

mv tl, zero # tl1: max
int max = ©;

C . . . Jj compare
for (int i = @; 1 < size;
i++) { loop:
if (a[i] > max) { s11i t2, to, 2 # t2: i*4
max = a[i]; add t3, ao, t2
t3: addr of a[i]=base+i*4
} 1w t4, O(t3) # t4: a[i]
return max; ble t4, t1, endif
} mv tl, t4 # max = a[i]
endif:
addi te, t@, 1# i++
compare:

blt t@, al, loop

mv ao, til # a0 = max
ret

ex:
%

ex:

@ ex

* Ex:

EX:

EXERCISES:

pseuvdo d nown-p
C2l\ foncHon-name - jal ra, functien.name

nen - pse
Sub au, zevo, 22 nes al, a2

2dd 24, z2ero, 23 - wmv 34, 23

IS
addi x2, 2evo, OxF2

{

0000 1110010 12 bi¢S > +!

2ddi x3, sero, OxFFY

same value at both points (2) and (3) in the code execution? Select all correct answers.

ML 11l _0olo & NEG! interp. AS FFFF... FY ((2 b FS)
The s@-s11 registers are callee-saved registers. This means that: (select all correct answers)
O Prior to making a procedure call, all s registers must be saved on the stack.
(DAt the beginning of each procedure, all s registers must be saved to the stack.
@ AIl s registers that are overwritten within a procedure must first be saved to the stack.
At the end of each procedure, all s registers must be restored from the stack.
@ At the end of each procedure, all modified s registers must be restored from the stack.
100.00%
You have infinitely many submissions remaining.
Which of the following statements are True in code that follows the RISC-V calling convention?
(JSince a registers are caller-saved, you never need to save them onto the stack in your procedure
implementation.
[JAIl a registers must be saved to the stack prior to making a procedure call.
@ Only the a registers whose value you will need after returning from a procedure must be saved onto the
stack.
[(JThe ra register must be saved to the stack at the beginning of every procedure.
@ The ra register must be saved to the stack prior to making a procedure call.
[(JThe s registers must be saved to the stack prior to making a procedure call.
[JThe t registers never need to be saved on the stack.
®EThe s registers are guaranteed to be returned from a procedure call with their values unchanged.
(J A procedure may modify the stack without restoring it to its original state.
You have infinitely many submissions remaining.
ao al
f: 4,6 Given that mul follows the calling convention, which of the following register(s) are guaranteed to hold the
/7 (1)
- zero
mv a2, al a2 =@ az=2
mv se, al SO =6 wmol (4,2) seozz n

1i a1, 2 at=2 al =2 0ao

/7 (2) an
call mul Qa2
// (3) oo
add a0, a0, a2 Ou
add a0, a0, s0 @s0
// (4) @s1
ret

/o] e

ja\ ra, lavel

ro ? 8o 64
0.0001010000_. . 00000 _1ouwu\ 20 bit immi 0....)
0.19-12
o 320
Iw S8, Hl(se) SP=x2 = ObOIO
]]
rd rst S8:=x 24 = 0bD1100OO 256 =

imm=z 4 = Dbo100O 64U =

0000000001 00. bo0lO_ S0 _ 11000. ©0000O!!

010000

O0-0D01010000O.0O -

2_8

zb

o
[—)

rsSl rS2 7 5 28
Ex: beq 25.tS5, I12b imm: nioo
< 4

xI$ x30
oty 1110

S im: 0100
Ex: (sw +3, ¢ (00)

¢V rst 4
%28 x0 rsl
oo ololo ro
ex: 0b0000000_00101_10000_101_10110_01100M
—_— — —_—— —
rs2 x16 x22
SRL xS vsi S6e
to 36

int quad_sum(int w, int x, int y, int z) {

int a = sum(w, Xx);
int b = sum(y, z);
» b);
3 D ity B lower address 0x33
0x4C o= v jal 3a+4Y > 2= 48
quad_sum: OxE8
7222722277
sw ra, 0(sp) 0x05
sw s0, 4(sp)
sw s1, 8(sp) SP —> 0x3A -__Prev:ods
ls fz
mv s0, a2 ox12 fuwnc. caly
mv sl, a3
call sun 0xB7
mv t0, a0
mv a0, so 0x00
mv al, sl
mv s@, to 0x62
catt ox11
mv al, s@
call sum 0x23
w ra, @(sp)
W s0, 4(sp)
w s1, 8(sp) higher address
272222222222
— bottom of stack U +16 + 3:-83
ret
int fn(int x) { 64 16 3
int lowbit = x & 1; 20=0x53 = obRIOI_OOl|
int rest = x >> 1; lower address] |
if (x == @) return 0; lowbit = 0coD- 000!
else return ?77;
}
rest = oo0lo-lc01
ox1 from preévious
fn: ra=2ddy of 777 retuen fn (j) +)
. wost recent
T Gneea | o
W ’
[sw s1, 4(sp) P> "" SO
sw ra, 8(sp) _ s\ & most recent
andi s@, a0, 1 SOz lowbié
srai s1, a9, 1 Sl=res¢ '_"“
€ stop ox1 sO] Xz-5l<<| + sO
yy: = -oon = o_om
ez €0, ; ox23 s 010. 00110 ©ce:1 = 0OlO
- =vreSk “ 7
20=s| mv a0, s1 € 20 oxA8 Yo yalzra-4= A4
jal ra, fn -
recursion [Cadd a0, a0, so & refuvenn V21 ¢ lowbit ox3 sO j3l ponts to next line
0x1C]
(rtn:) s
lw s@, 0(sp) 0x6C ¢ .
w s1, 4(sp)) = Ist cau raz=jal-4 = 6C-4=68
W ra, 8(sp) higher address (di‘F ra)
addi sp, sp, 12 bottom of stack

jr ra

O(OOIDD | (o,
S0 108 111\ 1 NRCIEDXIENS
_/W

— & Vo2 v 1

&
OloO(OQIOQQO@ ?

int get_remainder(int x, int y) {
int difference = x - y;
if (difference < @) return x;
else return ??7?;

}
ab=x
get_remainder: alzy
sub te, a0, al tO =z FF

bltz t@, rtn
addi sp, sp, -4

@

lower address

(svse-)
era
P —> —ro
e — | [0 & ra
—_—

1 sob

J 2dd

sw ra, 0(sp) OxEQ
mv a0, to 20 %x-4Y 20= O»7 OXEC
. : cEF,
jal get_remainder gqet-cewm (o 9) initial
w ra, 0(sp)
addi sp, sp, 4 higher address
rtn: € 8 vspewnd.
. bottom of stack
jr ra
getrem (Ox 67, Ox20)
Oli10. 0111 00100000
64432+ 7 32 rém=s 7 oul
103 [—
7 = 20
Yy =32
00l10000D
[[S—|
2 ©
The following C program computes the sum of all elements in an array.
int arraySum(int* a, int b){ lower address
// int *a: pointer to array
// int b: length of array -
if (b == 1) return al@]l;
else { 0x78
return al@] + arraySum(a+l, b-1);
¥ ox7
}
SP —> 0x54
The corresponding assembly program is shown below: ox6
21= b
arraysum: 0x54
W a2, 0(ad) &— 22=
1 a3, 1 23:z1 0x6
beq al, a3, end
addi sp, sp, -8 0x54
sw ra, @(sp) Stere v3
sw a2, 4(sp) store (0] adedly 0x3
addi a0, a0, 4 3o+H
#REPLACE <-—— b-1: addi ai, a1, -l 0x7520
jal arraySum
W a2, 4(sp) 0x9
add a2, a2, a0
W ra, 0(sp) 0x7524
addi sp, sp, 8
end: higher address
mv a@d, a2
ret bottom of stack

0x10 ¢— Sp linid. nown-vec.)

Call _insStruction: Ox30-Y (jal)
=Ox2c

Hlzqalasl-rec s

stacked data

if _no store:

Ex-: caller Lalner 2: caluee

= . call caller =

= Jras | -

- . =
call caller2 ret
= S~ —
by (Jome back
ret Yo ra)

if Store:

caller Laller 2: calee
2dd - - cau caller z

Sw K —_ =
call caller2 — ret

ra -
x: caller & callee = S~—r-"

(jome back
ret Yo ra)

int function_A(int a, int b) {
some_other_function();

return a + b;

}

function_A:
addi sp, sp, -8 =12
sw a0, 8(sp) -

sw al, 4(sp)
sw ra, @(sp)

jal some_other_function
w a0, 8(sp)
w al, 4(sp)

add a0, a0, al
W ra, 0(sp)

addi sp, sp, 8
ret

Does the above assembly obey the calling conventions?

OYes

®No

You have infinitely many submissions remaining.

int function_B(int a, int b) {
int i = foo((a + b) ~ (a - b));
return (i + 1) ~ i;

}

function_B:
addi sp, sp, —4
sw ra, 0(sp)
add to, a0, al
sub a0, a0, al
xor a0, to, a0
jal foo
addi te, a0, 1
xor a0, to, a0
W ra, 0(sp)
addi sp, sp, 4
ret

Does the above assembly obey the calling convention?
@ Yes

ONo

int function_C(int x) {
foo(1l, x);
bar(2, x);
baz(3, x);
return 0;

function_C:
addi sp, sp, -4
sw ra, 0(sp)
mv al, a0
1i a0, 1

Sw 3 (w

jal bar

1i a0, 3

jal baz

1i a0, 0

W ra, 0(sp)
addi sp, sp, 4
ret

Does the above assembly obey the calling convention?
OYes

@®No

int function_D(int x, int y) {
int i = foo(1, 2);
return i + x + y;

}

Sw SO,
function_D: -12 S« S|
addi sp, sp, -4 & |« SO,
sw ra, 0(sp) e st
mv s, a0] weed 4o store SO 2

mv s1, al S| Yo Stack twen
1i a0, 1 restore back

1i a1, 2

jal foo

add a0, a0, so
add a0, a0, sl
W ra, 0(sp)
addi sp, sp, 4
ret

Does the above assembly obey the calling convention?
OYes

@®No

Sub

Ex: +r2¢.e Shous countBits(i©); stopped befovre rin l1abel
[

countBits:

beqz a0, rtn
2llocate 8 [addi sp, sp, -8

bytes ¢
Store| SO, ra;

%=x>>\.4-mv a0, s0 a0D= S

sw s@, 4(sp)
sw ra, 0(sp) a0»l
. srli so, a@, 1

unsigned y;

else {

=prev ao>»>(
PO

/* Counts the minimum numnber of bits required to express a number x/
int countBits(unsigned x) {

Xz

if (x == @) return 0;

/% Shifts x right by 1 bit. *x/
y =x>>1;

jal ra, countBits cau seyg cturn countBits(y) + 1;

H N
Lognt ba& a0, 1 f: is}upaated
deallecate 1w ra, 0(sp)
& cestor@ e v s0, 4(sp) Ox240
$0,ra addi sp, sp, 8 2uy
4g
Stop — zug
rtn: jr ra 2 so
b=s0
0x93 _
0x240 T
0x1 s0:=1 (g;ursf\le
hl ca\ls o
same A z0x240| vor countBiFS
B Ox2 |sO =
221l =
SP> [0x240 | ra s 1ot >>1
0x5 s0 =5 |zag>>1
0x1108 || ra
0x37 sO

indHal can

+o countBiFs

vawe

Qo
Se
se

(Y3

binary_s

if:

else:

recurse:

done:

L1:

2+...

(return val.) 2

2

Cannot

earch:

e

addi sp, sp, -8
sw ra, 4(sp)
sw s@, 0(sp)

mv s@, a2
beq al, a2, done

add t@, al, a2
srli to, to, 1
s1li t1, to, 2
add t1, a0, ti1
w t1, o(t1)

el z arrclmol]
bge a3, +i.eise
mv a2, to

j recurse

addi te, to, 1
mv al, to

call binary_search

mv s@, ad &ro. DxCH

mv ad, s@ & cé8
lw s@, 0(sp)

] cC
lw ra, 4(sp)

&stop
addi sp, sp, 8 DO
ret og ~ pe

10 = Oxe

aD al a2 a3
unsigned binary_search(intx arr, uint32_t start, uint32_t end, int element) {
if (start == end) {
return end;

so:enc\ }

mid = (start + end) / 2;
if (element < arr[mid]) {

end = mid;
} else {
start = mid + 1;

3

return binary_search(arr, start, end, element);

\)how is it a3?

How many words will be written to the stack before the program makes each recursive call to the function

binary_search?z |

You have infinitely many submi T ining.

The program's initial call to function binary_search occurs outside of the function definition via the instruction call
binary_search. The program is interrupted during a recursive call to binary_search, just prior to the execution of addi
sp, sp, 8 atlabel L1. The diagram below shows the contents of a region of memory. All addresses and data values are
shown in hex. The current value in the sp register is 9xEB@ and points to the location shown in the diagram.

Address Data

OXEA4 0x0
OXEAS8 0x5 sO ovvz cannob tell
ro ra of
OXEAC oxc4 | end (inck) = A
SP> OXEBO 0x6 sO ::ICI"'S""e
_./’ curveat -
OXEB4 oxC4 o ve S0 =6
OxEBS o6 cufrent rav =¢c Y4
X X so
OxEBC 0xC4 T ¢ra
OXECO (OxA SO original
OXEC4 x4 | ra evedl
OXEC8 Ox3E <D
=4 inal
OxECC 0xCA4 Lol % catl
OXEDO OXCED
5.4) Problem 5.4

What is the value in register s@ right when the execution of binary_search is interrupted? Write CAN'T TELL

if youcannottells6 |

100.00%

You have infinitely many submissions remaining.

What is the value in register ra right when the execution of binary_search is interrupted? Write CAN'T TELL

if youcannottellfea]

100.00%

You have infinitely many submissions remaining.

5.5) Problem 5.5

What is the hex address of the call binary_search instruction that made the initial call to binary_search?

You have infinitely many submissions remaining.

5.6) Problem 5.6

What is the hex address of the ret instruction?ps |

[s/er2s] - REC

STACK OETELTIVE:

find +the 2Ssembly

uint32_t foo(uint32_t x) {
if (x ==0) {
return @;
} else {
if (x &1 ==1){

return bar(x >> 1); // diff

tode corresponding w/ assemebly

uint32_t bar(uint32_t x) {

if (x == 0) {
return 0;
} else {

if (x & 1==1) {
return 1; // diff

} else { } else {
return foo(x >> 1); // diff return bar(x >> 1); // diff
} }
} } Pointers Address Data
} }
OxEA8 7??
OXEAC ???
foo: bar:
addi sp, sp, -8 addi sp, sp, -8 [Xo) sp-> OxEBO 0x1] curvrent
sw s@, 0(sp) sw s@, 0(sp) valulsS
sw ra, 4(sp) 40z a0 >» 1 sw ra, 4(sp) ra OxEB4 0xC4C
Y13 beqz a0, foo_end - beqz a@, bar_end]
2! i":;}‘) andi al, a0, 1 Q0= so¢< | andi al, a0, 1 So OxXEBS8 ox2 same 3d°l3 :
\25 L1: L2: stef, o So must be
and W€ srli SO, 20. 1 ¢ srii 50,20, her) a | OXEBC OXxCAC™ bar~ (bae cal
ene beqz al, foo_else beqz al, bar_else ~a-0o(4 b3, not foo
: N " ?
c- 9065 mv ad, s@ # diff 1i a0, 1 # diff OXECO 0x4
c&:\&'oo.e(se call bar # diff €& €3\l OxCtoo j bar_end we catl s 50 can bar)
; 7 . o
¢ j foo_end OwCO4 J .y bar_else: n't modify ra
s 3l ‘zzk foo_else: mv a@, s0 # diff /- & de X314 OxEC4 0xC04 ~ AEE ra
vik ™ mv a0, s@ # diff call bar # diff é=catl cug " .~ 2097
be o' call foo # diff call Feo Ow COL par_end: &va SO OxEC8 0x9 &—s u.ed .
foo_end: OwClo T w s@, @(sp) ro AdEe rat
1w so, 0(sp) lw ra, 4(sp) OXECC 0XC10 &
W ra, 4(sp) addi sp, sp, 8
addi sp, sp, 8 ret SO OXEDO 0X13
ret ra N
OXED4 0xBO8 ¢— init call
Oxgog -4
pc = addy of insfruchon S0z 0x9 = 06loOl cc| SO wxB8oH4

-find stariing point (Sumes)

S Obloolo Zoxl2

The following line of code is run. At various points throughout the program (denoted TIME POINT X),
the values in certain memory locations and registers are saved. Some of these values are shown in the
table on the next page. Using the code below and those values, fill in the missing cells in the table.

jal ra, log a_x #<--------- TIME POINT @ (after this line is executed)

ilog2: # produce ilog2 of a@

addi sp, sp, -4

sw ra, 0(sp)

addi t1, zero, 1

blt t1, a0, ilog_else

addi a0, zero, ©

beq zero, zero, ilog_ret
ilog_else:

oONOUVTh WNER

9 srli a0, a0, 1

10 jal ra, ilog2 & cails itself (same r3)
11 addi a0, a0, 1

12 ilog ret:

13 1w ra, 0(sp)

14 addi sp, sp, 4

15 jalr zero, O(ra)

16

17 idiv: #produce idiv of a@/al
18 addi sp, sp, -4

19 sw ra, 0(sp)

20 addi t1, zero, ©

21 bge a@, al, idiv_else

22 addi a@, zero, ©

23 beq zero, zero, idiv_ret
24 idiv_else:

25 sub a@, a0, al

26 jal ra, idiv

27 addi a0, a0, 1

28 idiv_ret:

29 1w ra, 0(sp)

30 addi sp, sp, 4

31 jalr zero, O(ra)

32

33 log_a_x: #compute the log of a@ in base al

34 addi sp, sp, -12

35 sw ra, 9(sp) 3 words

36 sw s, 4(sp)

37 sw s1, 8(sp) $0: 20

38 add s@, a9, zero Eﬂr K==mmmmm-- TIME POINT 1 (after line 38 executed)
39 addi a@, al, @ 20:-2|

40 jal ra, ilog2)

41 addi s1, a@, @ sp remain Sa3me

42 addi ao, so, © # 0 <-----m--- TIME POINT 2 (after line 42 executed)
43 jal ra, ilog2)

44 addi a1, si, ©

45 jal ra, idiv)

46 1w s1, 8(sp) #H C--------- TIME POINT 3 (after line 46 executed)
47 1w s@, 4(sp)

48 1w ra, 0(sp)

49 addi sp, sp, 12

50 jalr zero, O(ra) # <--------- TIME POINT 4 (after line 50 executed)

6.1900 Spring 2023 Q4 -14 of 23 - Exam

ro

new
se

SO

sl

°9
se

[

Complete this table for Problem 5, using the code on the previous page.

Address TIME POINT © | TIME POINT 1 | TIME POINT 2 | TIME POINT 3 | TIME POINT 4
0x3fc93fo0 Oxffffffff Oxffffffff Oxffffffff Oxffffffff /\exfffﬁcfff
0x3fc93fe4 @xa5a5a5a5 @xa5a5a5a5 @xa5a5a5a5 0x42001620 0x42001620
0x3fc93f08 Oxa5a5a5a5 Oxa5a5a5a5 Oxa5a5a5a5 | 0x42001620 \ L 0X42001620‘/
ox3fc93fec 0x00000004 0x00000004 0x00000004 0x42001620 0x42001620
Ox3fc93f10 0x000007c2 0x000007c2 0x000007c2 0x42001620 0x42001620
ox3fc93f14 0x00000123 0x00000123 0x00000123 0X42@016_50 0x42001650
ox3fc93f18 oxffffffff oxffffffff D[(9X42001620 9X42001§0 0x42001650
Ox3fc93flc 0x00000123 0x00000123 || E9X42001620 0x42001650 0x42001650
ox3fc93f20 0x420165bo 0x420165bo '—k 0x4200167c/ 0X42001_§_9_0 0x42001690
ox3fc93f24 ox3fc91000 0x4201540a 0x4201540a 0x4201540a 0x4201540a
Ox3fc93128 0x3fc91000 0x0000000f 0x0000000f 508(0_,0080(2%1; @GOOOOOOF\
0x3fc93f2c 0x00000011 0x00000001 0x00000001 @W 0x00000001
ox3fc93f30 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
Ox3fc93f34 0x00000111 0x00000111 0x00000111 0x00000111 0x00000111

Register TIME POINT © | TIME POINT 1 | TIME POINT 2 | TIME POINT 3 | TIME POINT 4

ae 0x0000008a | ©x0000008a | 1.oppooo g2 3 2
al 0x00000005 0x00000005 0x00000005 2. 2
s 0x0000000f O x90000083| Dwx00O0D0OOE&2 2 Ov ('-
sl 0x00000001 0x00000001 2 | [
ra 0x4201540a 0x4201540a Ox 4200167¢C Ox 42001650 | Ox d2o1sY 2
no t"l&ﬂae
t1 0x0000000a 0x0000000a O xoooo0000O| O O
sp ox3fc93f30 Ox 3ca3f2d Ox3Fca3f2q | Dx3Fcazfzd [Dx3Fcazflo
/ —
oq Se ';:g:"l
6.1900 Spring 2023 Q4 -150f23 - Exam

ab=¢§
3l =2
So

TiPS To MYSELF.

* pace yourself!

e uvnderstand foil qggsh'gn be Fore d.‘v.’ns [X’a)

° pPay atiention +o +ypes

-Sian v unss d
- hex, decimal, binary
- pointer?

~char vs. int

-0 vs. \O null ptr

-size (8 bits? 32?)

Sw/, lw -
*memory? #4 ., array?

. NOo _multipl’er

