(213125 - recitation 1]

VECTORS: in real wn space (I'R“) 2 point is clescribed by wn real coordinates

> 30 arrow 2w Blso be oeseribed by v real coordinates %

OPERATIONS on vectowns: I8ometric eic | iw coonds. \ (2,3)
v x
P ScALAR MuLTIPLICATION: /./"’,7 eV, ... V) = (v, e, v vg)
givewn 2 realt v 8
vector v, Va2
< ADOITIOAN: v
given v 2 w D ) = (Ve Ve ewn)
w
‘\) v".:l.,
> SUBTRACTON:

V-wz V4 (-wW)

V‘_IL:_
2 LENGTH: what iS 1enath of vz (v, Vva)? Yvii+v,2 -
in general, lewgth of vz (vi, ...,Va) is [Visvg 4.4 vaz "II :

\
B UNIT VECTORS: Vvector of lewngin 2 >
given 2 vec+on ? in Airecow of v is G=_IVI

> PARAMETI2ING LINES:
El

.o line is (s,2)+ (1)

(s, -
)

‘Single vS. multivariable
[llqlzs - lecture :L]"' .vectors, odot prodt., plane equs

SINGLE NS. MuLTIiVARIARLE CAce:

Single:- MUl z

1‘

YUsf(xy ., 2=F0xy) ] q%
’ 3
? wWzEly,2) x._/

parametrerized curvls: x.y, 2 3l funcs. of pParameres ¢
C)
vecior Feld: eg. wind 22T _,
20 inpout (locaton) r-
20 output (wind vector)

>

x

A » -
(x:y4)
L} YI
F([;a]) : [Y‘ ]
X :
N
OIFFRENTIATION
scaling
n factor
Singie: ;\_3-._-‘:'(*) AY R bax
.9. 3.o0o012 2 9.006
eq. y=x* @ x=3: e.g. 3.00
dy A 2.999 2 g.994y
€0xy=2x, £03)= Fx ’x=3—

gewneralize o wmolbi: given aX (swmall chwanges in X veav &),

Efsc, we'ce 30,'“3 o °(° sowme
®
§=P{§), 5: fR" what's covrespowding ag? inear 2lgebra.
e R i to convert 7D +o UD vecior, vse
near 23, ¢ixed ag =2 ax 4x7 matrix

v 3
row ol



x[$]exa[2 e ?]

VECTORS & DoT PRODLCT: NoTATIONS:
X > [x'] . S H
v € IR"" w -+uple of real H's column veclors V:[:l'] o V= |3 1-[,2]4- [*!]
we cawn ado & scale vectors. ¥z o, a2, x3> I 71
= % T +x25+ x;t.)
on'd
veciors
DeoT Pgooucf (MU'HP': vEc\-e"s)3
- v - W
vE ‘:,'t-] L PRV 5 3R s viwe #Va w2 e V3w 4+ Vawy
vy W3
Wy
turns out: dot product helps measvre awngle
S 2: Iv]I18 - bl V8 R .
V.3: IVl I8l cos®, B=2ange Proor:
NOTE: VL B ifFf V- W=0 (comes Ffrom 12w of cosines) v -3 Compote [T-31%
—
w
PLANE EQUATIONS:
A=normal
vector
ﬁ \7\-(:—;‘.): (o)
S q] - _ [Xo -~ %
oo X e—variable “'[2 , Xe*® 2: , xs é‘
gixed o3¢
- o
R -%o :[22"] R (R-7o) = a(x-xo) +bly-yo)+c(2-2.) =O
20 a
plawne throuvgh (Ko, e, 20) W/ wnormal [ Iz]
[2/5725 - recitation ]
PROVE midpoints of 2 trizngle 2re cowncurrent (mee+ @ same pa-‘n{-)
g-a
e p———y ~A+3(B-R)=3 (A+F)
A
5 /‘/v
- -
A+8 . A+ = A+ +8
-C s o+'é‘+t(?-c.) Cct :%. we'ce @ O + +

line thvough pt. O+C in direction 2

in geweral, line though point P in directon v is parameterized by p+iv

Dot ProouveT: V= (v, ... V), Dzl .-, wWn)  Phen T.3 zviw FVaWzt..o + Vawa
= 171 18)- cosO

THEOREM: V- & =
w
= w PP, P22

SifF ¥V &8W are L, then V- R =
S>if V8 A 2re same direction 3 twen T Fzlvlwl = Weerp.
Parg, v V-wsz V_wpara_‘v.wperp
= |V|.|wPa"é|
para
! w = -V for some o
then V.wP2™@ - o |y|2

g:véewn vectors ¥ & "_"‘. how to €'nd decomposition into wpara& NPEPP.?

Q:
D
@ Vwzv-wP? 2 we kviow WP o oy For some real # o & av.vsalvl?
v.-«w V.w
— ar -
Ivl2 So wf = w2

So V-W = alv2| se o=

w +hen WP P. J- werar

2 Jweere
Rp &
ar



Dor ProoucTs +o parawmetreriae plawes:

Q: what is eqn. of plane twroogh p. L 4o vector V?
" Wisl 4oV . WV=O
p E
S -
SO (Xe,X., X3) is own +we plane ¢ +hes S P W for Some & with o.¢co
(XQ-pe, Xe- P,’ xz-P:_)- (Ve,\/o, Vz) P & ]

(xe'Po)v°+ (*\'P.)V. +* (XZ' Pz)V:.-'o
Q: given 2 point &, whats distance blt. & & plane though B L o ¥

>

g
erp. 2 o v
/“"’ﬂ:p h " wf -T = W] - |v)?
P o.9
e | /= So |wPert V] - ¢
lvi2
> oo
So distavnce from o 4o plane = , lvlzl

«projections
«Cross prodvcts

(276725 - lecture 2
splanes in 3D

Ranoom 1Tems: (ciean-ve)
Vi
Sif V= [ H ] en |¢|=Jv,$+,,,vn‘l. - alt. notation: nei
-% ® /
A 2 +

Ve 1.
> we 53y @ is unit vedor i6F IRI=1 5 v \_/

.often wwite un'+ vectors s Q¢ wetation

- [ T
T Yz eos™'x

SPECIAL UNIT VECTORS: in 20, 2=[0],
m 30 2: [3] £ rz f=[3] "

in ne0: e..(a] gz [}

—

>

3

"

F\'
=0.-- g
N
1

-8

from V.3 1912 cos0, e:ms"(_“-'-“w| ) »gives vwque valuves
bl+ o > r vradians

eV SV evte L +va = |RI2
. rmuch
- perpendiculaw, orthogonal, normal 21 mean Sa2wme Hhing pretiy
v

+he ‘component” of T 2long W S
- -
formula is I¥lcosO = T‘T‘T = compg (V) (wovid be neaathve)
K~ =« projection of V onto w

> projecton of ¢ 2long W iS the vector whoese:
—

.direckHon (s same 3 w
.magnitude is componewnt o
side example: what's vector

iS unit+ vecror = —[3

ProsecTionss: given ¥, oelR
‘"= ¥ component of T in

-1

divection of R

£ ¥ 2lowng w
\
[g] but w/ magnitucdle ??

» use ful in direchon of \:l‘ =
w

* notce T
[l

So vector we want is o [?]
¥ pupeed Y =

PICTURES: " -
————— . ‘ﬂ' pe

Proj;'.,(?) is vector in direckion of ¥ w/ (sianed)
DR 28 R N (-1 PR A1 W
prosn(9) = (Ta; (lal = @r)" (T )™ &scaler wmpeonent

projecking y
-

2long W (,‘_'.(%))G = (v.2)&

— -
v-w

‘l o e, —
w\asvn#'\)de 1 |

For MULA:




APPLICATION": distance from 3 point +to 2 plane

et (v.u4.2) pt on plane (-4.8.3)

plane 2(x-u)-3(y9-3)+(2-3)

s
V=(1,4,2) - (-4.33)= [_',]
3

Jiq

- =
Ve

|&/1

Compy *) =

(Lec. 3- 2/8/2587] - CroSS PropucT of VECToRS (owniy in 3D)

1y
v w, Va W3~ wzavy 23 3&"

= Va w[N;Y s | -(vaw, - w3v) 31

Vv © V3 w3 Viwg - w,val 1 2

2 3 () 2) - (1)C-1) qQ
| x= [ ' ] S [t-nm -ta2) | = | -7
Ex: -1 2 (2).01) - €3)¢H) -1o

2 q
Ex: V- (Vx&) = [-'f]'[:.’,] T 18-28+410= 0
- - - ?‘] [j, - -
w.(wa)= 2) | -o £ 27-7-20:=0
GIVEN ¥, W 6”23, cross product Vx & S svecior:
& (Farther
.0IREcTION: L +o both Tx T K'w (Far )
. ¥ (ciosev)
& determined by “RHR'’ (note: Bx 7 = —(3x2))
* MAGAITUDE: |¥xR)| =1V ]R]1sinb iR15in0 .
. Can
w
2re3 of parallelogram
NoTic€e: cross product cawn also nhelp vs Fimod plane eqgwns:
3pts. S &
6\;\:’(:-@ PE * P_l-i: ‘l':, normal +o plave
Line Ean. 2D vS. PLAaneE Eans 30
Yy=wmx+b Z=mx+ny+b
Y=Yy = m(x-xo) 2-20= m(x-xo)+n(y-ys)
gene- (" O (x-xe) + bly- Yed =0 o (x-xo) + b(y-4o) + C (2-25) =O
2 fax+b5=c ox+by+czzd general

SYSTEMS OF LINEAR EQAIS:

<[i] vl (T[] [4] 5

Ex: 3% -y-2z=1 *Solving line2r tombos of vectors”
¢ USS/ 3n
X +y -2 = -2 2v9. 3 -1 -2 32vssia | oo
wmat. PR [ ] —,el-m ©1e
2% +33 +2 =4y 2 3 1 ; u Srous o o1
redoc.”’

X+ O4y+O0z:=2

MATRIX MULTIPLICATION:
2 3 [ X - [ 9,
u s x’-] - 'ﬂs]
6 7 ] [ﬂ, ] Ny
& Ya T 22

.
3
.

2% +3x 3 = u, B =-9.AT =2 » A(BT)-3
Hx,+5x;= Y2

63,{-732231 AB=[§Z][§ 37

8y, + 942 =22

o (1.4.2)

7.

2nswer is
1ength

(1.4.2)

-
v

[ piane

projecting I'ght blue
Vvec+o~ oOonto I/ne
ontaining A

b
2 A | = ad- be (del-erm.‘nawl-)

=

b

17 2][5]- 1)~

2
3
x =2
- 9 =-!
€2=3
(Ad =%

plug i 6 (2x+3x2) +7(Uxi+Sx2)=a, > (6.2 + 7.4 Ix (63 +7.5)x272,

62 t7.4 6.3+ 7-5]

ol [8-2 +9-4 g.3+9.8



N €ind eqn. of plane

[2/iol25- rec]

DOT ProOOULT vS.

. (VI‘-..'VU\) < (v, ...,h’n)

TVIW, #.r. VWG

- well defined in 2ny
directton

Row REepuCTION:

Ex: 3x-y+22 = |
X+Yy+25-2 (o

2x +3y+tz2 =4

3 woves you c2n do to matr'x 4o  vedoce

Yo +hs Simple Forwm:

') SWwap rows

Cross ProoucT

-t
Vx®W =

191131 sinE A

-Cross product Ux R S 3 vector

cVUxz - eV

(direction F£lips - RHR)

“(vi,v2,V3) x(wi, W2, w3g)= (Vawi-V3Wa, - VW3 +V3W,, V,Wa -Vain)

-
v

xn = det
2 X
! 9
' 2

. onig defmed on JR®

T4 K
V, Va V3

WewWy W3

3
-2 1
2

vyow
reduction

it

| oo ?
©1o 7
© o 1 ?

2) moltiply 3 row by nonzero constant

3) add scalar molEple of 3 vow +o avnother vow

PRACTI\CE:

. 2 vectors:

[

o ——b e

norwmal vector:

O 3 1-3
I-l -1 = - {-(I-~Z) -
2 =3 4 3-+2

(1.3, -0,4,2)
<2,0,1> -0, 27

+hvo usk

{=t,=1,=1?
(21'3, -1>

|

-2
-3

s

(2,1,1)

(0.u.2) 3nd (-1,3,1)

S-';"ow:l + vow 2

3 2 |

u
0;'3-7
2 3

£ wiJd

A-\

1 [o\ -b
Z ad-be |-C &

plane eqn: a(x-xedebly-y )+ c (2- 2o)=d

P+: lo' "‘l z.)

-2(x-0)-3(y-u)+S5(z-2)=0
o\.b,(,:<.z,.;‘s>]-> 2(x-0)-3(y )

“2%x-3y+12+52-10=0

[-2x-24+52=-2

b) find 2rea of +riangle (ormed by connecting pts

parallelogram are3a = I¥)-181sin® A

ax + by

) wwen does

cx +dy

2) vow vedouck. (ex. zbove)

(U

1]

( -|‘+-(7-+-l’-)u7+32+n)s;v\9 (
()T Ysine (2222 ¢

d5z
[

{-2,-3.5>
J2Za32es2

S have

2e™ Solubhons?

1L SelobFon?

Sin® (‘2: -3,8 >

o Ax =0 wave
nownzero soluton
whewn det Al =0



M2trix- matrix & matrix -vector multiplication
. linear Fransformatons

[2/n1257 - Lecrure /g- geometric transformations (rotatons, reflections, projechons)

BR=9 MA;:S—, A(B:)=:’: > (AB);='2‘

LAST TIME: bu%, +bi3Xz =9, QY+ 242 T 2,
O,j = entry b2 + bzax, =4y,
Q2,4 +O =2
in ith vrow, by b2 213 22 %2 2
Jjtw cotumn 8= | by, b2z A= :u ‘:-:. ]
3¢ A2z

“compose’: (o b+ Aeby, )X + (Aubia taiabys)xa2 = 2,
(Aabn +Azaba) xi + (Qaibiz +Q22bz ) x2 = 22
R = vow Cu Cia

Caeat (riA)-(c18)  (Ri1A)-(C28)
C=A8= | (r2a)-tci ) (2 A)-(c2 8)

Ca, C-Zz
‘mxn makrix” v by p Mmatrix
GENERALIZE: AyzZ, A has m vrows & n columns 82=3, B has n rows & p columns,
(m 2's) (v y’s) n equs in p variables
m eq’'s in n varmables (n y's) (p x's)

C=AB cij = (ith vow of A)- (ith colomn of B)
(#Cels of A) must equal (&8 row of B)

EX: (sx3 ma'l-r:x)(g x6 ma{-m‘x) = (5:6 ma{»p.’x)
(3 x6 matrix)(5x3 matrix) = X NO!

NOTE: A is nxn, X is mx 14 watrix (= vector!)
A% is nxl wmatrix (= vectorl)

'f distributes our addition”
LINEAR TRANSFORMATIONS: Y=F(x) is linear ff F(x.+x2) = £(x,) + £(x2) For any x. X2 eR.

£(x)=x% NO £(x)=mx+b NO. Clxi+x2)= m(xi+x2)+ b

ly ¢ b=0O -
£(x)= x YES. only E(x.)¢+E€(x2) =M, tb tmxz2+b

the only such Functions areé E(x)=ox For consiant o

GENERALIZE: (3:1-(;‘)' ’—:erkv\, g.erkw\

NOTATION: T: R"“" — R™ T s linear ff
set of set of
inputs  outputs T(aR +bX2 )= a- T(R)+b-T(X2)

(domain) (codlomain

TURNS OUT: T is linear if€ T(X)=A% for Some mxwn wmatrix A.
x _x+97 _w
Ex: T:MR3s R2 T([g])'[ z ]'["’3]

write Ix+lgy+02 =W __—5 so T =A%, A=[ob?
Ox + 0y + 12 = W2 (2%3 matrix)

x t Y

check: AX = [(')lo?][‘l;]=[ 2 ] -



Ex: T:MR?*—> R* jinear

s3y we kviow: T([é]) = [,SJ & -r([',’]): [;’}
Q: what s +([31)7?
T'([;])-’ T(2[$]+3[?]) :T’(z‘?-(-Sﬁ‘) = 2[%]4-3[:7:[;]

'\ 2 paralielogram shape

T [21:7(27)

VISUVALIZE:
—_— (2] N
——t— + | ——t

mareix: T([5]) - T(xt+ur) =% TN+ 9. Tlg) =x[3]+5[3]
2 ey Bl N
c.,\m,,sTa.-:T([L])' T([.‘])

*in general, T(X)=AR, linear A is the matrix whose

colomns are TI(E), T(6),..., T(E)

Ex: T: R TR", rotation 90° Ccw

T([:1)=[%]1 matrix iS [0 -'] |

1 o

T(122) =[] BIaRED —“I‘"

[OF"'CE HRS: ] -2/12/2S

1- (:g’°3§) ("‘"vn) (m.m,)

o
oo

qiven square matrix A, is there 3vother matrix so et AAT' =T
A-! exists &> de+ A ¥ O
(AY(x) = (b) “* A"Ax = Ix=x= Ab

Ex: (0) votzt+ed Q0° ccw (?)

L

(?) rotated A0° CCwW (o

twen vrotating (t) 90° (CW s rot2ting a($)+b(?) - T(o.(;)+b(?))
= (o)) + T(6(N)

DETERMINANT: = aT(é) + bT(‘.’)
o
Ex: (oe) doesnt have inverse =Hdet=0 or “rows aren+ independent”

(22302 3) (5 2
o\el-(:\:)-‘ od-be

ROw oOFf:

a b | ' © I o
(Cd|°l = Lo

inverse
matrix



DeET: 3x3: ‘cofactor "
aet(EF)  4et(3F)  ger(2E)
} gh d
det = adet(EF) - baet (5 ) scdet(an)

b c
A e £ ,
9 W

PROTSELCTION VS. CompPONENT:

-
w

projection onto 2 line: Imnear +ransformation R* - 2
Findk Component = paralle!l to Vi Wear

€ind Scalar component of R paraliel +o V: Jﬁpar’

v

<1

~ Vi Vz)

¢ 4 K
V., v V v v, V3
det - v = 4 detlv 3, —'rde+(u. w;) +klw w,
VaW3 -ViW,y

vVXXw =
VaWw3-V3W2
= [-(viwzg-vaw) | = [ -ViwW3z + V3w,
ViWg = Vo W, Vinwg -VaWw,
-
EX > B=e+d

LRECT- 2/12/25 - MATRIX MULTIPLICATION: txm)
1090 Y
o110 .. -
AN = Ta
s

ool

TOENTITY MATRix (o0f dim. n):
2if M iS 3 matrix such that I, M is well-defined, then ITum=m

g similarly MIn M if well-defined

TNVERSES: if M is 3 nxn SQUare walrix, is there 3 matrix M~ such +hat MM = MM =Tn
» 2nswer: Sometimes. (an +ell by whether +he determinant = 0
V\’;"\ nxl nxl
~velated +o system of Lnear eqns. in Follow:nj way: Can ewncode w eqns in W vars /V\x,:-b /
Suppose M has inverse ML then M "Mx =ML where M TMx= T, %X
Some get x=M b . his s unmique Solotien to our SyStem.

ox+by = r
cxtoy =S

EX: systewm of 2 equs in 2 vars € 2 ines in plane
Solutions &€— intersecton pts of 2 lines (0.1, or o pts)

Unique Solukions é— 2 lines arent paratiel

the dererminent gives 2 Formula for testing whether M has inverse ¢— Mx=b has un'que solutiown
—> 2 lLines arent earallel

in our exameple, the lines are paralle] ExacHy when (c,d) 'S mulkhPle of (o, b))y aack-bec=0

a b
we define determinant of 2x2 matrix 4o be o\e"'(c. d) = od-be

then +Hhs madrix hasS 2an rvnwverse é——— detM * O
suepose I have funchon T:MR™ — R™. wwat properties wmost T sabsfy 4o be 3 tinear +rans?

T(atb) = T(a) + T(b)
T(eca)=z cT(a) For C €R

Ex.



these +wo properiies Show +that T s determined by 2 matrix.

T(:v:) : T(a.(‘:’) + °*2.(?) + +ah(?)) = Q.T(é) + 021'(:',) +... +a.\(?)
matrix encodkes T [),...T(5) and Hhen matrix mok. tells how +o compute ().

QUESTIONIS: Find matrices for the following linear iransformations le—"lk"

. vrotate 90° ccWise arovnd origin

3
9 q] a -C
-’
2. reflect around x-2xiS I [ v ° [c—l [ q-l
; car t o a a
3. votate O radians CCW around origin 2. [ Y _‘] [C‘l_, [c]
u. ject to x-3x'S .
projec o:;q-o» of 3 3 ws® -sin®7fa acosP +Lsin®
5. scale by c . snp ¢osO || ¢ ) Lasine -cewose
6.

project onto line spanned by [z,]
4. proj, V= [L%][%]Z[gj
5. [%3]

- =
-linear combos/sean S v.2 i
- inear independence 6. projgvs= i1
(21131257 - lecture -cizssic Iimear 2lgebra - bzses

LINEAR COMBINATIONS: given V.,%2, ..., " €R, we can add/scaie them +o make new vectors
Ex: 27+ SVi -RVy

Ex: every [§]="[§7 +5[f7+ 2] =xt+yr+ 23

GIVEN V., T%,.--,

€R", we define sSpean i»"/'., ety Ve ? = se+ of all Iinear combos
eV ¢ caVa .- 3 where Ci,.., Ck Bre Scalars
Ex: sean$1,4,53 = 2n of I‘E‘z

Ex:\’l‘.=[£].v'{?] I

- = Y
span V., V28 = plane /
in IR3 +hrovgh o~gin X

s

of W, ...,

IS spanid, Va3 always 2 plavne?

s Plane whose eqwn. s

xX-y+2=-0
is span§ T..V2, 738 always 21 of R32
T~ R seanf..3 can be:
® au of m3

@ p'ane Hivough origin
@ ling Phrough origin
® §33% ex: span§sd.33 but if spanf®.723 is 2 plane 8
Vsd span§ V1,72, Hhen
Spangv., %, V33 = a0 of R?
LineAR INDEPENDENCE of yectors:
2 set of vectors $£0.,...Vr3 is linearly depewndevt iff one is 2 I'near Combo.

of (Some of) the others.

—
MORE Formacty: #here zee SCBI2nS Ci, C2...Ck #13k 2c€ not all O sovck +hat GV + C2Va+... +Celi =8

Ex: g[i][”l[:)i V3=2V.+V¥, OR 2774-?:.-73:5’
“ V. T

Vi

ex: $001,08].[3]3 w=s3  or s®-Yii00:3



LINEARLY INDEPENDENT: NOT (inearly dependent.
> ffl‘., v Ve B s lin. ind. FF C T 4. +Cx Ve =8O DCi+.. +C=0O

[ - o N -

X: Vo= ['o]/ Vs=['], ¢V +C2V2 =D
< ° °
> [c] 4-[&]: c.-oc:] [‘
o Ca ©

how #o tell i€ set /S linearly independent ?

e S[I] 1710513  comsider C[ ]*‘2[ ]*‘3{ ]:[E]

- I o & g:‘} [:] [: Ti e]
2 s ) o
[; '(-7; cs ° OR Splve o « 3| o
1 o < . i oS o R2-R t oS o
[l G2 :]&f'o._sog{ou-so
o « -3 | o o 1 -3| o oo o0 |0

C.+8c3=0O

$ s
replace [3] w/ [:;]
§c3= O ., Cs: -3¢3=0
C, -
Cz*‘.’ai;:o [g : 3Css] C3[ ]
C3=0 ' s
-s[i]+3[7]+]3]-3

-bases llnearly dependent.
-dererminant

{2nu128] -1ecture / - matrix inverses

LAST TIME: givew 2 se+ of vectors £ ¥, T, .., %%

-Span = se+ of I'neav combesS of vectors
. linear depemdencel:m*ependev\ce: s one vecror hLear combmo of otwers?

. : . KA = gck i€ vectors odependeni
in general. dim sean £9., %, ... K3 =k ¢ veclors [ndependent

given coleckon @, Vi, .. Y ¢MR" we say they Fform 2 basis of R™ iff:
.span $%,Va, - Va3 = R"
©§4%,....7x 3 are linearly independent

Ex: 2,53, in R3

é[g], [;] [ E‘;]; NOT bas:!s (stuck in xy plane)
éfé] [2 ] [z*’jf 1S basis: row veduction [:;?7]

2ny basis of R™ wmust have n vectors (use this +o define “dimensson”)

in IR", n=smallest # of vectors wneeded +o span IR"
n=largest ¥ of lin. ind. vectors

a b a b
DETERMINANT: 2x2, A=[c. pry ’ de+A=’c dl:ad-bc

Ex: T-R*» R? | T
_l CHEEL |

T(X)= A%
T Areaz( (a+b)” (¢ +d)-ad -bd -2 be)
= actbe +tcd -ad —ba -2bc

Peesil 8
IE uf, = ad-bc =detA
area | ? detAa= ‘area scaling factor”
-
Sc3ling 2aA%
€actor QQ N area = 14(3x)
T(ownit sa.) .
A=[2 L]

detAz 14



3x3 DETERMIMANT:
“volume scaling Factor”

c (For x— AR
a ¢ A e
p], de+A=a'ﬁf,"°)9;,"'°,gu,

vol =1

o b (4
Suppose [ ; ], [ f,], [ f] I:neav-l:, de pendent
Scopianar (1€ on same plane) =D paralielpiped would have vaive © > detA=0

waeo
k_l fﬂg-

(2181257 -recitation
V3

A\

SPAN: What iS +he Span of T Vi, ..o, Vm3 in R" 7
2 subspace of R™ cowsisting of 2ll \inear combos of vectors Ve

Ex: T & 5 span R2
[0 “w
() (?)
A, 3:32 sSpan m3
IR!

: S . 7
(:) (.) (o) doesn‘t span R3, oniy seans 2 plane
NOTICE: n vectors Span 2 space of dimension £ wn (expect dim. n, but rhere couvld be ‘redundawncies”)

LINEAR INCEPENOENCE: What does i+ mean +0 Say v, .-, vu3 in IR™ are linearly independent ?
i AW+ A3Va 4... +OmVm 2O, +hen

‘no _vecktor in the set iS 2 1inear combe. of +he others, in other wovds,

in other words, no Vi IS in the span of the oiner Vi’'s, So a2 aico
fVu--'v\m? SPan 3 Svbspace of dimewnsion m. in particular, MEn

ind. in R2

EX:T 88 2are linesarly
1, T,ﬁ linearly ind. in I'E-*
(:g)' (Z)' (i) are wot In‘nearl_-, ind.

BASIS. set of vectors i"u---,vmg imn R™ s bas's if +they are lineariy independent and span_ R"
NOTE: every bas's of Size w - this will define dimension of gewneral vector spaces.

“€gx: §4,5,83 is a basis for R3
~ex: (8)(1), .., (i) is basis eor R"

HOW TO TELL if v vectors form a basis?

DETERMINANTS:
.det M is calculated v'2 recursive Formula -+ -
-det(a) (ixl mart~x) = a (: + < :)
- + -+

- det(b) [2x2 matrix) = det (28) =ta-det(d) - b-det(c) = ad-be

-de?(:::) = adef(:f)- bde+(;f) +cde&(: :) = a(ei-fh) -b (i -Ffq) +c(dAn-ge)
ghi

RELATIONSHIP To INVERSE MATRIX:
'_(M -b) when determinant 0 & there's no imverse when det=o (For 2wy dim)

’ (::)-l= ad-be (-c &

. det M is +he 3vea Scaling Factor of the Iinear Hransformarion M

u=F(%)
du=Feods _-I:]IC - _I_’Ijm de+(Vil..-[va) =0 exacHy when Vi, ....Vn don't Form basis of RV
o/ \



(e,0)

Ex: project onto x-dxcs linear hansformatrcen T givewn by (;eo
(o, ' '
el cnecw: (52)(5) =(.)
(;:)(?> =(:> 2awnd since (;). (?) form 2 basis, i kviow this s
dei'(‘ oo) o) right Mmatri s,
*when det = O, no basis is formed. T(5)=T1(~(s) +s(?)) =rT(s)+sT(?)

£2/19/267] - office wours & rec:

LINEAR TRANSFORMATION: MIM'(:)
T(3)= T(a(e)+ () = T(a(s)) + T(s(D)) = aT(s)+bT(?)
rg=(°]3) Re(b)= (528) » (¢ )=(sms)

PLANE EQUATION: Ox+by+C2zol
- (*%2,92,22) & (3,43 23) on the plane — (x2-X3.Yz2-9g, T2-23) is vector bl them

(o, b,c) (x2-%3,4z-us, B2-23)= Ox2tby, +C2, ~Ax3-byz -C23 =d-d=0

EIGENVECTORS £ EIGENVALUES:
EX: google Taylor Swift — what is +he best+ website?
- What would happen if staried in 2 random place & kept Following links?
let's describe Ha's with 2 matrix:
jove wikd S3lly official...

juve (o) UE} .,3 I[S
wiksd o o o 1 cliicking on bunch of random links €2 moltiplying matrix by bunch of times
sany | 3(s o o ts

offxial

.
H

how +o €igure out What n high power of this ma+rix looks like?

i€ v is vector such +hat AVEI1Tv,, +hen A%y =17, Such 2 v is caned an eigenvecronr wl eigenvalve I

i€ we Can undersiand eigenvectors, then we can Compute high powers of the mairix easily.

AV =2V
EX: population of vabbits £ foxes ) What do Hhe coefficientS mean? do H.ey make sense?
rln) = #racbis inyear v in year O, there 3ré yes. relztionship bl r2bbik & fox POP.
f(n) = # foxes in yearw ] 30 rabbits & 20 Foxes
rnH)= Hrn) =2 800) 2) how many foxes & rabb+s are there afFev | yr? 2 yrs? wn?
E(nh) = r(n) +F(n) r(o) = 30 ()= 4(30)-2(20) = 80  r(2)= Y(8o)-2(S0)= 220
10 20 flo): 20 §(1)= 30+20= SO €(2)= So+g0=130
let v= ['°] & '::[ ‘°] call this matrix A.
to N - g0
what is Av? AZv? A™v? what 2bouvt wW? — 2" | o [_l: ?] ig) _’[-': ?.]( so )_’ o

= 3°
write original vect. 25 lin. tombo. of Vv & w (,[::]Hz[?gl-[zo], c. &cz=|

what is eventual ratio of rabbits to Foxces?> 2:)

Wow 4o F-'nA v 8 w?



. e-‘sevweuofsle:g,evwauues
/» . o\:asonal-‘zah’ew

(212012587 - lecture

RECALL theorem: let A be wnxwn mairix. the following ave equivalent:

-
1) det A #0O AR<D )
2- A
2) columns of A form bas's of IR™ AATI R = A i
¥=A"Db

3) columns of A span R"
4) Coluwns of A 23re linearly independent

S) lineav System AR=zb has un/gque Solution
6) A" exists (AA™ = ASA=Tn) — x= A"D

RECALL theorem: let A be vnixvwn mairix. the following ave equivalent:

l) oet A =0 de'ﬂ‘l-
2) coluomns of A Gorm basis of R®
don’f

3) columns of A span (R"

4) coluwns of A 3re l.near|5 independent
dcn"'
§) linear system AR=b ‘has unique Soluiion

ot
6) Al exists (AAT = A-'A = Tn)

HomoGENEOUS SYSTEMS: AR=D
-
%=

-

-3a\ways has Solotien o
-det+r Ato &> o] only soluiron
-der A 206 Hhere ewists non-z2ero Solui‘ons

EIGENVECTORS € EIGENVALLES: wnxn wmakrix A
we sS3ay noneero VEIRM s ecgevvector with ergenvaloe > (for A)
ife A‘G‘:)ﬂ" V:e-‘aev\vecl-.l A= eigen val.

-

A scales V bot doeswnt change its ol-'rec_f.‘cn

“ U7 e [

*6 is nevew consradevred [q -2][2] R [ 6] _ 3[2
' | | [} = 3 = l]
a2wn exaenveokov‘ !
Va

so, V. is eigewvector with egigenvalve 2, aund

rhere does Hw's come from? N
V, is eigenvector with eigenvalve 3.

4o o—2 [ x
if we we'te [ \ ' ][5] = A[;’J (we want o Cind x4, A)

Ux-2y = Ax (4-2)x -2y =0 homeogeneous!
x +y = %3 i . + ("’*\‘j = o WE Lany nonzevo Solutrons
- -2 x o Rhas nownwero Soiwns.
= € wuhewn de+ = o
| -5 3 °

det = (u-2)(-2) - (-2) = ©

Y-Sx+r2+2 =0 ] cwaracteris+ic equaton
(» =3)(»-2) =0

A=3,2 e—efsenvaluest

in general, ecgenvalvues avre solutions to: olet(A-XI)=O & cwharacter'siic polynowm:a), degree

10«
I=[ 'y ] identity mathrix
]



y-2 -2 (x [o]
find eigenvectors 2associated +o A=2: = ]

pleog A=2 back in: ! 1-2 9 °
2 2x-2y =0 _
*+ry Same thing for A=3 +to Eind ecqenvector U= ,) o xX=Y - Say X=y=|.
x-y =
in _th's example, eigenvectors form 2 basis of R?
-wnotk +rue in geweral

b
So V= [:
(eigenbasis)

- ]
ex: Az Lo'] > cnaracremshc poly. = det['s* L ] = (1-a)2 =0 - a=1,

plug in A=l -» [21[5]=[2] - y=o. [‘;] s only e‘senvecton

B

DIAGONALIZATION: nxn matrix A. Suppose A has e-‘senbasts

Vi, V2, .... T with gigenvalves A, Xz, ...
ler B= matrix Whose Colomwns ave W, Vi, ..., Vn
_ Ne oo o
le+ D= [o PO ]
O O Az ..

then, A=BDB™' cdiagonalize matrix

e A [T IR S e ] S

3 2J2-1 -l 2 zz][-‘\ -zl-]:[l;l -'27 \/
A4 = (BDB™)(80B™')(BOB"')(8DR™)
(BDE&') (BoB™') (806 ) (BDB™) = DY~

e e cepten  [171% (2027
=[o:]°:]: J

o 2*

keanways .diagonalization ]
*read +3 3 f -polar coords. B_[“ b-J R B-| i ) [d b]
[2/21125 - 1ecture]] . complex nomber € =lc & ce——e o
DIAGONALI ZATION EX: wmarkov chains STATE DIAGRAM:
L(+) R(+) o‘gcw /3'_2\ fDo.v
e O=®
.. . S~
e *transition probabilities”
L(n+1) =0.8L(n) +0.3R(n) Q: long-term behaviov of Sustem?
R(n+1) = 0.2L(n) +0.2R("n)

l‘un-n)] [0.8 0-3][1.0‘)]
EIGENVALUES: A=\ ,A=0.S Rinen) o2 o e

& Am

Lo "
Q: K A" [Rlo);l “probabiies
1 o 3 =
DiAGonALIzATION: A=BDB™. ©O=lo o-S}. 3:[’- 1 "Mmm !

A"=8D"8", o":[5 o3n] , 87'= [} 3]

ST P (#[s 4]) = (33 5[; N=E[2 ) s ane[on S0

30
: ‘4 o0.4 Wil stabil-ze
ing D for larger noy L(o)] [c LlLle)erca)) :Vf_’;’“:e:::?,,,
l“egl a:ble) ;Lv;‘] R(o\ u (Llo) + R(D)) e
RECALL: PoLAR CooROINATES.
‘.Rz

LONG-TERM behavior: 60cf ow Ieff, HOo/e on vkt
e (¥.0)

x

r=zd\'st. From orogin
O=2n9le ) + - x-S

P An



PoLAR To REcTANGOLAR: RECTAANGULAR To PotAR: 2 b+ inexact:

f: R:am? X = rcosSe 9: R*— R* "'”"""“-"ﬁ 1) depends on Signs of x 2y
(r,e)-b(xo‘.‘!) Yyz=rsine (xr3)=> (= 8) ©=tan (7) 2) if 6= x, it can also equal 3w, S~ TX, etc.
g: R2- §(0,0)3 o R*
domain
of or.snn

ComPLEX NUOMRBERS:
Q: what are eigenvalues/vectors of:

e
R = rotation by +90°= [ 7] ./e-sevwalues (divecton changes duning rotahon)

N _' or Azt1T, complex-valued e’genvectors

det(R-AT)= |7, = A%+l 20

Complex #'s = §X+g: IxerR, ‘«.‘:lg

m.eie Re(x+yi) =x “real part”
Tm(x+yi) =9 cimaginary part”

A X+yi
Complex plane:  X+yi > (x.4) — R Conjuaate: 2= x+yr.
B S
A A T = X-9Aa

addlition: (x+ya)+(atbi) = (x+a)+{y+b)A
wold: FOie (2+4)(14+34)=z 2+ A+BA +342 = -1 +74

division: L¥34 2-4 _
2+A 2-A . X +YyA :re“e
. r .
Complex exponentials: e'®= cose +1sin6 9 e™ - 1eT™ = -1
. A AD x
X¥ryas (r-;ose)-k(rs-'ne)f\ = r(tos® +AS-’N9) = i‘eA r=1,e=n
. . 2R (XL 2R ; .
moult: lSe"})(‘le'%_)=20e'{’*T)=2°°m-‘-2° ,| e =i
DIST point 4o plawne: AREA OF PARALLELOGRAM:
point = (x%,49,,24) “[7=|Vx| = ,I {cross prod. ptsy ?
v

coeff. of plane: (a.b,c)

lax, + by, +c2,-d|

distance = Jateb2ece

> or: project vector from pt > pt on plave in terms of @

2/2¢u/25 - recitation:

EIGENVECTORS & EIGENVALUES:

EX: vr3bbits & foxes represent as P(n) = [;“::] we know ot pln+1)= Apln) where A:[? _.z]

so pl) zAplo), pa=Apl) = A2plo) = pln)=A"P(0)
in_¥he problem, plo): [ig]
catcolating A[32] is hard.
on other hand. [.: -7-'][::] =[:g _ in other words, A[2 =2[12). so A%[i2]:= A(z[233)=ZA w]=2 2[ ]
so A" ::]: 2"[::
in other words, [::] 's eiqewnvector of A wl eigewnvalve 2.1\
Could +ake [g] 2nd write plo): 2.[2:]* o]

HOW did we find en'sev\veci»op/e.‘sevwalue?
want ¥ such +that AT =7 for some A, i.e. (A-ATA)V=0

so X s not each eigenvalue
i€ det(A-2Id) 0, this system has 4 solvtion, i.€. V=0 3. eigenvaive corresponds +o

i¢ der(A-ATd) =0, +hen 00 solutionS & 1S e‘genvaive eigenvecters

Ex: det(A->TA)= o\e+[‘-"* :ij: (4-sr+a2) =(-2) = G-Sa+at = (A-3)(r-2). SO eigenvalves 2 & 3



Ex: what is eigéwyectors w/ eigenvalue 37
(% 205130300350 - [2 3003

[‘ -2][ §]=[:] So X-24=0. So eigewnvectors are in form [z‘:?] for any y.

1 -2

C subiract » from

. in terms
write PLo) “hrs (#d:aaonal-’ia*"(’v\)

were, we
of eigéen vec

otor: [32]. netice ploy= [+ [22]. se A%eo) = A™([81+[12]) =A"[1] + AT[15] = 27[10] + 3°[2

-solve for eigewvalues (A-ATd) ¥ =0
c Plug in to tind eigenvectors

10O

O Cind e/genveéctors &8 eigenvalwves of A;[gf; .

.8 .2 g-r 2
-3 .7} 2 [-3 .7-)] = (-3->~)(-7->~)-(.oe):o

= .56 -1.SA+AY ~0.06 = O

.S~ 1.S5x4+A2 =0

paramel-rtz-eol lines in 20120

/"'E'Paramei-ﬁ‘ze‘} curves
: +o
[(2/25/25])-1ecture #a +angent vectors

PARAMETRIZED LINES:

it we want 4o ‘write down’ 3 Iine in 3D, we wneed 1o vse ‘pacamerrization’
2D: line 3x+Sy=2. ‘point Fester’’ (plug in p+ & see i if sar'sf.es)
pt (-1,1) is on 1ine. olireckon is [5] uz-3 42
[31- 177+ 2[5] S
pbram(;be# (4.-2) .
spoint generator’’ '+=Z.'

3D: similan, but X.4,2 in terms of parameter &.

- ‘) - -
ro=[38] = [3][7)
2(+) 3 2

think of # 23 2 wmap: %2{53.2)’

we ¢can urite as xW=-2-St
Y= -7 +3¢t

= 2t
i= 2= 3 +

(L]

/‘-\ x24+42z| (pt. +ester)
x(+) cost
EX of PARAMTRIZATION: +rig! ) ,-:“),[.3‘,.,-)=[s;ne

t=0
=R
t +race once: O sts2rn

_3n
==
2

%kcan have molirple parametrrizatons of sSame cownve! Pocar Eans: v=£(8),

s(#) _ [cosSE
F)= [-,u-)] = [s:nse

TANGENT VECTORS:

g =

ex: #(+)= [*M [:’f\:]

diccrentiate: #in)= [

Ly R s #(3): (& ]

e ® ~— x]: rcosO
QY= [rsinO

EX: hetix!
A [x((i;] cost
roys.] =z | 9lr =] sint
{ (%) T 20 t

-z l2

neve v(#)=1#(#)|
#'(e) L R} oney
velocity when circle

speed = | #(+)) = v(+)
v-\agna-ude

©cos©
Osme

= #(e)

(-sint)2 4+ (cost)? = |



[2/20/25] - recitation - {est review

UNIT CIRCLE & TRIG: LINEAR TRANSFORMATION:

SUPPOSE i have linear +ransformaion T:R?-MR*
svew that T[1=[3] and T[]: [¥)
Cos@z(os-0 | -3 corresponding matriw M=[s’ 2]

sSin@=sin-©
then T[t]= [: '_f][:] - [3.;-:.,

7,

Sa+7b
J3 %o ) [usN\JZ check: using His formul2 T[e] = g;:]:[;)
2+ (387041

EX: Find mairix for T +hat projects orthogonally
onte the line 5=§
STEP 2: wwatis T[b] & T[?]
*2ppro2ach 1: Find angie blt line & x-2axis
& use cosine

' Cos® Sin®
2 [2] shourd go o cos® b PROTECTIONS & COMPONENTS:
in direction of the line O

2
in other words, this problew of Ffinding vector projechon of b‘:['-] 2long line spanned by N=[-]
- o -

] o = _ 2 - > - - yw - =13 \ X~
I V.3 = Vpara ' v = [Vearal | W10 — 1Vparal= TAT — Vpara = |Vearl - [
S I perp

17-[2
Veara for [2]: component 2long Iiné = L213],

2
2 [?]E'*_'; =

vector compownent is yx ° F = [;.lllg] —> So T [;] = [:;g]

SPAN: the sPan of se+ of vectors iS the setr of Iinear combos of +Haem.

. -
2in R -one vector ¥ spans line § 21 mulkiples of V3

a
] o
= - S intS [b]
. two Vet Vi 8 v2 span 2 plane if they are lneanrty independent (ex: V--[ﬂ. "z-[é]. span is set of points | b

a
-if they ave dependent, they span 2 line (ex: v.=['!]3 Vz=[£], twe span IS pis [:]
‘ Fhree vect: lin. ind 3 span 3 volowme, 2 of 1IR3

AcA det of matrix wlcols s nonzevro (‘volume)

' o [
EX: V.= [ ] vas [;] V3=[5] Span 2 plane but ave not linearly independent blc Vvi+va-Vzz0
Hne & of elements in 3 basis of RM is always .
i¢ set of vectors spans IR". we must have Zwn vectors, and. if it has v vectors, {hese form 2 bas's.
)

i€ set of vectors in RV s linearly indep, we must have Sn vectors, and Ff = wn vectors, i+ Forms 2 basis.
given 3 vectors, set+ forms 3 basis & spans & linearly indePendent SHdet 20

PROPERTIES OF det:

. larea-+ranstormaton Fackor” of we corresponding linear iransformation.

. tests whethevr colomns of ma+rix Form 2 basis/sean/lineanry independent

* Fests whether matrix has an inverse

. Fests whether AR =B Ww2S owne solukion o~ wot (N\nen A has inverse, X=zA"'E)
-if de+ =0, teres a redundancy, so eiHer no solutions or =° Solotions

x+y=3 q‘ x =3
Q‘x-ﬂ;’:q z zx-:?-_,:& -
(paralel) (same tine)

2/2al25-1ec

PARAMETRIZATION EXS:

EX: parametrize circte of vad 3, centered @ (5,7, -a) 8 paralel jo xz-plane

2 2
(2] =[-sq] r3[$5¢
. \3 Ox X=S +3cost

Y72, Oosteen
(x-5)t+ (2-9)2=3% | 2--9+3sint



Ex: ellipse = stretch costk, Sint by JiFF.  3mounts

(0.,2)
[;] : sz-?:i :‘ (-s.o\/_{ (s.,0)

Cos?t+sinlt =

(_)_(_)z*(‘_j )z_ (o,-2)
S 2 =
x(+)
- we)
PARAMETRIC MoTion: F(+)= Lacy traces out 2 patrh in sSpace over Fme t
v(+)= pos.
()= vel. [x’((f)
XU 2| * +
v+ = accel, Why C3n‘t we Simply A Feren ¥ ate 2-“,3 o get velociky ?
/_\ \Curve ~(+) AV
2vg. rate of cwhange pos. S Aang ent,
. - W Flerbe) ~F (ko) il
o0 ttmy piece of corve instantaneoous = [T — e ° Flte) _ Similar fo secant

line = ¥an *a€

v (r)

é
weiTE dE 7)), or dPF={
P2 P at

o

16#] 23pprox. length of corve From ¢ 4o Ltot
ik o f |dP) as leng +h, of +iny part of (urve
‘Z':Ilo?-:l 2 pproximatres arc 'ew.
=0 b
3rc len= f 1a71 =!' #) ol

fza

.. xm
I"' ‘”l ’-21}] r,‘(k )N+ (w2 + (2°(41)2 ¢

J E
25 FE . S(+) — a(r)
Sde Jae

EX: et moving n  Xy-plane
know: @ tzo0, Flo):=[%], So=[1)=4-% & 8(!—):[&1)
Ewe: U(t) = [&(r)ae = I[;Z'-J = 3et] +T

e teo [1):[2Tre s [

Ex: £lying plane horiZontally @ 1990m, 30 ™is. wawk o dmp on specifc pi. what 2angle?
a(+) = 9.8k

=80 ™M/s
1000 & - Vio)= 804
- -, A
- r(o)=loook Lant height co
viF)= 80‘?-4-8&2 looOo-4.9¢t o

F(+)= 8064 - U.AER +looo £ s ’—’_’1:7:
1900
hori. dist: 80 ’ Y.

loo O

2ban [ —F—
0xrer(soFeE



e = (cost, sint)

(3131257 -rec - Ist rec after midterm 1

have fo add
A, (omponents
test q: reflect 2cCcoss line:

SNEAK PREVIEW:

oo
-2
2 [e *ohx
RECTANGULAR VS, PotAR CooRos in IR?: (r.®) potav = (rcos0, rsin®) rectangular -00
b ~ (‘105) .
R ®
zru-av\('?;)
COMPLEX NUMBERS:
x=3.0415... add Jizi to real #'s. so we should 21so add oa+bi for a,b real H's.
b .‘“'b)"’a"'b: if a+bi corresponds to rectanguiar coords, what do polar (oords corvespownd #o?
H 2 3
o eez cosO + isin® e"=|+x+%—+ 36—4-
(ie* (i0)3 s 1-20, &
i = | part 7S *.oee
e®. Lo+ * Tt So, real par 2 " 24
. 2 .02 4 . 3 s
=l+-9'eT-- %+ -e—q-l- imaginary part L(O'%“‘_g_g" )

they correspond +o vre'®

ADD/SUBTRALT are mouch easier in rectangular coords: (a+bi)r (c+di) = (atc) + (b+d)i

. i® i i(e
MULTIPLICATION/ DIVISION mouch €2Sier in polar coords: re”. r,e®: rrye (®:+62)
P 2

-we can SHIl mulkply ldvide in rech coords: (a+b:)(c+d) = ac+ beitadi+ bdi2= (ac-bd) +i(bc+ ad)

o+bi  c-d¢ (a+wi)(c-d')  ac+ba , be-ad
c+di  coar 2 -a%i?  crad? cteaz =
Ex: Compute |7 uUSing polar cCoords or rect.
>PoLAR: Find O S.t. (v'e:°)=i.=em'z i
we know (rei®)?:r2ei2® o, ue know 2z & Ze:zz - .z
Lz LyO="/y or TN

> RecT: find (a.b) s.¢t. (a+bi)* =t
we know (a+bi)2za? 4+ 20bi-b2 so a®-b*=0 & 2abizi , . .
= 2al:=1 = +i= !
o=2b * L So we get i(G+‘E> ‘A z

B ¥ 3

PARAMETRIZED CUORVES: aiven Some functon P(e): (x(ﬂ, Y(+), g({.)) Aesc"-'b-'ns e position
of some object as Ffunc. of +ime.

Ex: parameirize line bl+ (1.2,3) & (4,4,4). Say we're 2+ (.2,.3) @ +ime €=0 8 (4,4,4) @ t:=1
x(+)= 143k, yl#)z2+2¢k, 2(+) =3+ & (1inean correct @ t=0 &8 e=1)

EX: parametrize going CCW around circle of vadivs 4 @ constant speed (I pnit every 2n sec)
starking @ (1.0)
(3

—



surfaces T =€(x.9) at of
pactial derivatives o 33

\in€3r 3 pProx.

(3/ul25] -lecture 11fg'

2
FuncTions:  f: MR- R GrAPH of 2=F(x.4) is a3 surface
(x.3)-> 2= F(x.3) Ex: 2=x2+y? (bow!) Slilite . 9

How To VISUALIZE? -1 Sl2]?
-2]gls|u
O +able of values 2|10 1
ys-2 = oxi+y 20 pavabolas

@ 100k @ x=constant, vertical | o
Y-t 2 eIxm (x = comsé. 2150

Y= constant, slces Yz 0 =P a=a2
. . gzt = g=xiet parabelas)
@ ‘level curves/tontours §z2 =» 2:zx?4d
2= constant sices
b etc. ?.:|:x"+53: ]
2z2: xtey?z2 Hdrad:zlz
x 2:3:%+y?:=3 »>vad=J3
‘Covﬂeor plot
! fopographical mae”
Ex: 2= X2-42 (saddlie) @ 2sk computer to 2D graph
y-const: upward-facing parabelas
x-const: downward -Facing para.
contours: x2-y2=c
220 %2-4? 20> x2=zy?
s *x
2zl:xt-42z1  y2azx2.)
L txt o
PARTIAL DERIVATIVES: €x: @zx3y42x dreview cha: .
partial-x: pretend y is Constant, diff. wi ° ’ 2in ol
NoTATION: 22 F(%:4). ;_3 , Fre, e —!-a‘ 2 3wy +2 nuw denom, €fc
dx
Ex: 2:x2+942 » 5 = 2x+0 g_:‘,,‘s
partial-y: hald x constant
f(at+ax)
LINNEAR APPROX: 4 Slope=£'(a) = :—:
recau: 4=£0). @ pt (o, Fla))
™ 88 Ay= f'a)-ax
1_(o.Fta)) ax
— aPprox. by Fla+ox) - F(0) R £'(ar-ax
Y=o Following +he o
+tangent line. Ay
o
o
now 2= §(x,y) near (a.b, f(a,6)) flatax) 2 c(e.n;i’--u
2pproximate £(at+ox, b+ay)
it ayzo, f(atay,b) R g—f--cx
x
¢ ax=0,F(a,btay) 2 26 4
] 9 34 Y
o 2 v 26
ToTrAL CHANGE af & ox 0% T S50
[31s125] - office hours
(x.9)
-
© 2 pt in R®1I0 can be uniquely described 2s (r, 8) where r>0 38 O<6S2nx

or un-uniquely described by (re) whee r>o 8 -02<B<oO

(B+k.2x is same 25 &)
COMPLEX NUMBER: uniqueily described by o+bi, where o & b are real Hs.
e

. . - '.
(cos0,5inB) > coso+isin®=¢e
2 general noniere compiex # can be described 2s ve'®

(r>0, © uen-def vep to mulhples of 2n)

e. e i(6.+62) _@_
r.e - rae®2 - v, r bt
2 v e a./(°"8)

Ex: find roots of 22=-8i :os®+ (Sin® »O=-F
nH. degree poly 3lways has w roots ~=8
22 has 2 roots
83'”"2= re'©:z5se "5 r-S 8 O -wt some wmulkple of 2«

2= ’_e-'e‘, 2‘:rzezi9 - se_;xll

r=8 > rzi{g



20:-3 + multples of 2%

- -.E + mulpies of &

L3
i i(-F+xk)
z:=lg e LT endi

-qi R SR g ST/4i
=Jge gt or J& € &ownly 2 solubons! \\?e & ge

[ recitation]- PARAMETRIC Eans: used +o describe pH)= (x4, yer), 2 (#)) the pos.

whats velocity? e (t)= (x(¢), w2 ()
seeed 7 x'(#)%4 y'(¢)2 +2(F)2
direchon? p'(+)/s(+) &onit veck

in direction of ¢

of particle as Fownct. of ¢t.

cceleration? pulr) = (x (. 37 (F 1. E"(H) ® (u'nl»eSral of speeol over integral of +me iS
how far does particle +ravel over some interval of me? —s Ispeed de distance +ravened in that yime)
o

EX:

1) wotion 2long line @ ceonst+ant speed : p(+)z(xe.Yo, 2o) + tla. b, )
N—

posS. @ £<0O direction of ne

2) motion with ConStant acceleration: given P (Hl= (a,b.c) we know P'(H)= (aotta, betth, Cot Ec)
for some (Qo. be, Co) determined by pi(o)
L £? £.)

and p(H) = (Aottro+ S o, Bottbot T b, Cotblot3rC

€or Some Ao, 8o, Co determined by p(0)
3) mokon 2round 2 circle radivsS r @ constant speed CCW starting @ v=3

pl+) = (rcost, rsint)

variations: if center of circle @ (a.b), then p(t) = (at+tcost, b+ sint)

1€ cw, then plr)= (reost-t), rsinl-€))
(reos(17#), mSin (17€)) & 17> Faster

pl+): (reos(t+0), rsin (i e))

. if want 4o rotate faster, p(#):=

if want +o start somewhere other than 3 o'clock,

. i we know |vrev +2kes time x & use (cos(at). Sin(a€)), how long does | rev. +ake?

rao’hq try a:z—: > at goes from O +o 2x; Sso %1;*
PRORLEM: hockey puck’ Skiding across rce w/ constant velocity "")As"a"*""ﬂ @ (0.0).

it's rotating Cctw @ speed 2 rev/sec

find eqn. of pos. of pt on boundary that started @ (o0.a).

we'l start by Finding an eqn. c(t) for center of hockey putk

Hhen PP = cler+ CP(t) Cle)= (e €)= 0]

—-
pos. of  pos. of CP(e) = (acos(unt), asin(une))
cénter ot relative 2 rev= | sec "=i
to center ‘ 2
lrevs 3S5€ec °‘==I_a.'=q’t

for sourfaces 2=f(x.9):
. *3'\56'\“' planes
. divectional derivatves

(3/sl25]) - lecture- - the (20) gradient TOOAY: focus on 2:-F(x.y)

©

MoRg GEmERAL: g(x.y, 2) = constant

TANGENT PLANES: most general plane €qu s alx-%e) +bly-y)+ CLB-2e) =0, Pt Prlxo, ya, o), Normal vect. o +bf +ck

if plane # ventical, then C#0. SO rewwite 35 2-2e = mx-xe)+n(y-49s)
AZ = max+nay

m= *x slepe’: if ay=0, m=

neso -‘5 Slope” S-'M.‘|3rly

a
x , Slope in x direction

for 2:=Ff(x.4), @ p+ (a.6) 2oom in @ P 2nd surface ‘Clattens out, see tangent plane
'x siope”of tangent ptane = insiantaneous R.0.C. in positive x-dineckon, holding y constant = Fx(P)

ACs (F,(P))A’(-l-{‘ytp))as - A%z /™M ax + %:-45 —linear approx.

similanly, y-sSlope Fy(P) =
22
ox

plug tnese in, 3'“"H"):(‘*(“'5)“*-0\)*l“,(a,b))lg-s)@-{-angenl- plane egn

DirecrionaL Derivarive: NM“?)
Ex: F(xc9)=x2g+x, Pt (2:1)
Q: what s instantanloous RoC in direction -3X +27

rise . 42

to Figuee this out follow Fangewt plane 8 compute “Fon ahorizontal

Fxax + fgay ax oy
Covuld rewr e (ax)2 + (0y)? = cl( )"".3 J-) Fu,g):ng-rx

factor 2s dot Pmdu‘{—: <Fre, ‘-‘5>-<u.,q‘>
= v, e - 1 S a
whevre &z=<u,uz> a2 43 5

o
*Tentetemi  Jlamirtagn Jiniezr I3

Fxz2xy+!l
x(21):=¥

Fyzx?

fy (2.1) =4



e vector <fx, Fyd is calied +he gradient of £, written FF or graol £ )
DEF: given 2z Ff(x.y) @ pt. P, direckional derivabive of € @ P in direckion & = inst. ROoC of £ @ P in direction .
writren Fo(P)

Tum: £(p)=((5F)(P))- &

Ex: (S".‘-«-qg)-('—é'.‘*--z—g) : =

GeomeTric INTERPRETATION OF THE GRADIENT:

® s ot = le bi+ & & grad F
fa(P) = ((3¢)(P))-8 =|lvF)(P)|'|u| +cos8, where O=2n3

NOTE: -lScosB <) — -|FAIP)|<Ea(P) < | (36)LP))

EX: £(x.4)= x24 +x, P=(2.1)

a: (. = $ 4\, ML

8: (15, 7o) . sawme dicection as arad €, falP)=¢s.ay{Tr, T y: B =fr &8 l¢s,udl=dar
THum: (SF)(P) is a vectowr:

cmagnitude = max directonal derivative of ¢ @ P

sdirection = direchon of ‘steepest ascent”

-gvadient 2s vect. c:eld

. tan unes to level curves

- level surfaces, +an planes 4o level
- +otal deriv (+ Ma‘\-r-‘k)

(3le/2S - lecture]— sourt.

2e 3¢
for 2= f(xy), £:RIaR (3F)(x-9) = \Nox , 5% TF:IR?2S R2
(draw 2 vector Coming out of each pl,
getr 2 pic. of veckor eretd )
RECALL: geometric interp 0f §rad for 2= Flx.y)
OIRECTION: ofF max divectiona) derv,

.1 4o level corves ((fa)(P)= (FF)(P)- & = |§FlcosO

if 6:=90°, L 4o grad, then fa=0
MAG: max d:vectional deriv.

APPLICATION (4o Finding +2an Ines):
Ex: follow x3+g3 = q,.s
Q: Eons of +an. tine @ th's point?
considenr fx.y) = """"Sg -axy

(can do this For 2uy curve in xy-plane)

+en (36)P) is 1 +o t1evel case

Tf = (3x2-.q, 342_qx>

(55)(‘(,2): {30,-243 = 6¢S.-4>

So A=(s,-4> is L 4o level curve/Ffoliom

line throuvgh (4.2) w/ norm3l vect. (s,-u4d> s S(x-y)-y(y-2)=o /h

Sx-4yy=i2

6o LP OIMENSION: wW=Ff(x,y, 2) fF:R3» R VE=C6u, £y, €a>
Same geometric inkerp. & Same direct derivative formula g = (8€).&
SET f(x.y,2)=¢c, ge+ “level sorfaces”

- (S€)(P) is L 4o 1evel gsuréace through P,
Ex: Wz=Fflx,y, 2)zx2ey2ed?

level suvfacesS are x*+y?+ 22=C, sphere of radies J€
(3F)=<2x. 2y, 22> =2<x,y,2)

Ex: w=z flx,y,@)zx244y2.-22

LEVEL SURF: wz0» x2+42-22-0 - 22x2+y2
N=H-’xz'&53gal+q
WEYd xqpy2 2oy
TAN. PLANE: x2+42 _22z2¢ @ (1.3.2)
VF=<Cax,2y_-22)
A = (8€)(P)=C2,6.-4>

plane: 2(x-1)+6(x-3)-2(2-2)



[{3/10128] - rec

€ (x-y,...) c
= Tx
APPLICATIONS OF ParRTiAL OERIVATIVES: 9
Slogan: every function l0OKS 1in€3r on 2 Small €nough Sscaleé
(derivative Hells you Hhe bess linear approx. +o 2 func. @ particular pt)

(eosx)?
L)
what's best inear approx. for € near (x.4y)=Co.!)

Ex: Flx.9)=3sinlx)y +

Suppose f(x.y)-ax+by +C S best l'near approx. then the WOork below Shows best lin€ac

we want £(o,1)51 Should eaval a(@)+bll)+c =b+c 2Pprox. is Fle,y) 3 Ax+2y+2 near (o.r)
Y3 -3 (cosx) simx 2¢ 2(ax+by+c)
;;‘o")= Scoslx)y + — 4 > -aT(o..).-s = _3,,'“ aee) _ o
28 o _ (cos )3 2¢ d(ax+byse) _ )
oy 3sinx g @ Ew (e.1)= -1 —o8s b =2
APPLICATIONS:

") 2pproximating funciens NEAr known values: in
linear approx £lL1,.2) 2 2¢.1) -(1.3) +2=1.1

2) tangent I'nes +o level cuwves: L\L_'QF(*'8)=”
in oor exampte, +o E:nol tan. line E Ex.9)c s
+o level Cuvve though (0.1), 3k3 flerg) =t
level cur~ve Flx.g)=1, at pt (o,
pretend Fix gl 3x-yr2, and level curve
iS 2 s+ of ptS 3x-y+|=0 & y =3x+/

our Previous example, if we want o know FO.1.2) we can use

3) tan. plane o 2T Flx:3)_ ;n ovr q to Fing
+an. plane @ pd (0.1 0),
we pretend sorface 'S 2:3x-gt2 8 tl's s the ian planve a i
A | Clecn) —— o
4) direchonal dercvahues: 'FG[O.I):_F tzo TP (H) - € .
wheve Pl z(o0.1)+td. ex: &= —:,,E) I/
2s usval, pretend Flxry)w 3x-yr2. +nen fCepr))=Flta, 1+tus) R 3bu, - Lz a *+2
~ [9F Y]
;‘% Fldey X34, -UA2 . in other wowds, £a (o,:) = &- (5—.:, (.0), 35 (o.¢) )

A aq
2 9e¢ g 3 . PR
—_— — ) = - fewnie el
on oy )= VF Torad Y,
8 we care abouk tuis bie Falf) = a-vFlp)
ihe gradient points in directten where £ increases tne Fastest blc Q.-vf(p) = 1. |9FfCp)) is maxrwmrzed

when cos@zi TFP) 8 & point in Saame ol reciion j‘\

Ex: Suppose P is local maximum. what s ©f(p)? UF(P)=0 blc @ the peak-cant go vp more

. tot2l derivative
c Aiffrentils

© Mmultivar. chain rule
L3lurzs]-1ecture l‘l/' - (tf #'wae) higher ovder partials

REMINDER: when 2= flx-4), 211 directional oderivatives are dererm:ned by 3'&”‘, using formula DG =(3F)-&

ASIOE: matrix #ransoose: given mxn matvex A, AT s the nxm matrix Found by Changing rows into columns

14 49T
12377 _ e [S' = T
EX: [“96 = [3 i} [s3 T-‘[i-ﬂ, S;] = [4.5.6.7] oG5 = Qi

'

[] [ tiaaal] ppa——
GIVEN 2 column vectors 7 & &, ex L3 ), dot product = L1231lc ], we can urite ¥.3:=9'3

2z 21 " 22 2z _[22 22 [4"
we think o€ gradient as row vector s Ix2 wmatrix Ix 33] b2 2 3, 0x + oy AY = | 9x oy ay
thew (Do) P)-

2=f0x,y) =xt-y2

F€ s [23 -24]
Sf(3.0z[6.-27) va
2= [i572], (Cac)(e): [6,-23 5n)ea-rm
then (0 F) = ((3¢)(e)) &

(ox5)(P) =((Or) (P)) &



given €: R IR™, @ pt. PER", ihe total derivatve of £ @ P
S wxn matric (Of)(P) - ‘Lest I'near 2 pprox. of F near P~

B et b ] o (1) 81 [50R) [0

Wzxy = Falxey)

2.

% g1
+hen OFf:- | 2w =

e

ToTAL DERIVATIVE:

\
“Tacobian”

%

%2 3
[.a]::[” £y °x]
Ex: aw 2w 3 L)
P 9
(6] :
. = - | 9(e =, .
Ex: v*(#)= M r: R'> MR
. x ‘(+)
(o*))- -'-‘m:[g-m)
2°(+)
Ay ox>0 _dy
DIFFRENTIALS: oy R zuax —> dy= Fic 4*
. w2, .02, oxso . 22, 22,
S-‘m-larls. aea P ax 2y ay >0 25 9% 2y v
MULTIVARIABLE CHAIA) RULE:
RS R'—25 R’
ge
(308)'(xe) = 8°(Ye). F'(xo)
C=b-a
R Lol R o), R de de oy
3 dy  Ax
(30€) (xarsC o
2= flx.y) = F([;])
Y. x@) ="
[5]'['3(0)] v+ 5 o
[ ¢ [ 2 a
R' = R* — R use a2 R 5x OX* 3449
Xeo . xe a2 22 Qa
to— (] 2erf([2])  suueow S2afior 2o
de [z 2:7(d€ ot»0: de _ 92 dx 93 A
AE Ix Oy i—a- oAx ox b X7 ;-2

D(fe#) = (OF) (D7)

kcan make a3 variable dependency chart

Ex: 2
N \'5 de _

N €

o
v
w

x
+

!.'2.
~le

82
Ox

]
g

(3112/2587]- office hovrs

EX: cylindrical +ank volume =r2l, ¢ inflating Such +hat r incr. by 2 ewmls, W

what S volume (C rz102 8 h=z4.982
V(r, h)

v 2V
%:— z2xvh o0 ° re? aiso V(uS)= S=x

V(i4+ar ,5+a0W) & 2rrhar + xrlaw +5~x

iner.

by S cw!sec.



a“:=(3L‘;‘l %l g-:)

¢ 9f 9¢
f:=F(xy,2) 2 DF = 3—5,,—5, —g)
EX: ComPLEX #S

1427
TYPES: -Solve ;‘q,.

“find 2\ +he voots of...

ib . ‘b>" "
Ex: Finck Y+h roots of 2i: ifF ae is 4. root of 2, +hen (o\e =0 e

re'®:r,e® exactly when vzra; and 6:56: + Ssome multiple of 2x

So 2922 and since o is @ awnd veal #, +th's means a=Yz

Ub = % + k-2x for some k 2 CEL N
x »
b= g +k3

Ex: Yangent plane @ 3 3D point
2=F(x,y), P=(1.2,3)

2z Fe(x-1)+Ffyly-2) + £2(2-3)
2z 5%¢8y- 18 = F(x.y)

2,
> :—:(',z,s)-(x-:) + ,—:(-,2.3).(3-3.) ~ }:—‘.,2’3).[;_3> =0

= §(x-1)+8(9-2) -1(2-3)=0

n=<s,8,-1>
EX: DiRecTionAL DERIVATIVE

ﬁi)

(3/12/28) -rec

R3» R
2 2e =€)
F(mg,%)-’ VF:(ax. 2y, 2
recall: givew Some direction ¢ & Pt P consider Funchion g: R's R?
t o pttd

to Find derivatve of composition Pes: IR's> R3»>R'
we +ook wf.&

So we're S2uing D (fes) = DF-DOy
wmore generally: mulkivar. chain rvi@

given g: R"aR™, f: R™">R* e wave D(Feg) = DF-Dg

F‘l*u-"lx*‘) 9_‘; 9F2 o fFo

X - e

where if €= then OF = x: Px2 Xwm
fplx., ..., xm) 26 . .. 2Ffe

Pk e XM

eEx: e+ £:R' 5 R?2 3nd g9: R*amR2
&
£ (3c42) (5w (Gred

t+36+2+3 t )_ X(#)+y (+) +3
what is gef(+)=(2¢e+s blc gef(+)=8(36+2 ) (2xt4)+s

D(s~C)=(:)
of-(3)
Ds=(2 o)

s ox0f< (5 4)(3)=()

(o.2)

qlx,y,32)= 0= Sx+84-18-2

if WR'-SMR?: then hit) = (

)

= Zeixlz

L=,

h.(+)
ha(t)/, s Dh=

++34 +2+3 Y+ + §
2++8 “\2r+s

EX: box hgw 2 growing C 0.02 m/min, w growing C 0.02 mimin, h is Shrinking C -0.02Z mim:n.
2

when 223, Ww=2, h=l, iS vol intr or decr, and how Fas+?

V=2wh where £, w, h 2are functions of ¢t.

V.2V 32 9v 3w, SV 32h
%t 92 S¢ "aw 9t Bk ot

v

t

L w h

2.
LD
2ha

X



2(+)
w ()

2nother way of expressing +his is: ViR, v, W)= 2wh. we 3lso have func. P("’)-’ (\n“—))' So composition Veof g'ves

volume 2s funciion of +ime,

the formula 2bove is Same as Dv-Of

=Y ] v
2(#)=3+ .01t | 3¢ = +0O! :—:.-wl-. so we get ;Lel°)= 2:.01+3-.02 +6:(-.02) = =.04 (Shrinking)
ult)= 2+.02¢ |32 - .02 Y . on
Wit)= 1-.02¢ |2 __ o |gv _

ot o on° we

coptimisdtion
ceritcal pts
. max/minisaddlies

[3/13125)-1ec. 1S - 2nd Oeriv- +est

Recall: Optimieation For y=f(x) U ox24+bx+c =0
UNCONSTRAINEO OPTIMIBATION: x2 4+ %x "'i =0
.set F0x)=0, +hose x's called criticadl points 2. b 2 c _ b2
‘look for pts where Ffix) is undeéined loca! no global (x%+ Zxegma)+ & = Qo
‘look @ end behavior 25 x-» teo I e nmax! (x 4,’!.-; 2 ,,,“‘ ) t,_'
“For cridical pts. 2wnd. deriv. Fest +o classify 10:57' W giorat 4o Yo,
e £'">0 - local min min ™in (""";b-“)z-'f;a_;("le\c-b‘)

*f"¢0O 3 local max
“F20 5 noinfo (ex: fex)=tx™, n>2)

CONSTRAINED OPTIMIZATION:

Orestrict £ 4o [a.b]) eanalyTe Ccritical PHS within interval

scheck boundary pts For max/min
ofinite # of P+S +o plog in 8 Bind Max/min valve

@ Ex: Find p+ on Iin@ x+34 =10 which is closes+ +o oriain (0.,0).
idea: minimize Jriigt w/ resPect o consiraint x+34 =10

back to 2= Filx.y):

find local/globdl max/mens:
viow: $an. plane Should be hov
i.e. Find (x.y) pai~s so both Fx=o, fy:=0O

local mins Imax occur @ critical Pts. ) pts where TF = oundef
Cind critical pts.

20ni2) = look for~ P where (S£)(P)=8

Ex: Fx.4) = x2y +x4y2-6xy.
NEITHER wmax ov win:
ex: flx,4)zx2-y2

crit. pts @ (o,0) SAOCDLE

set Fx=0, — 2xy+42 -6y O —» y(2x+Yy-6)=0
‘s=°—°x=+z~5-ex=o > w(x+24-6)z0
Yy=0 OR 2x+9y-6 =O

=2 AND
XT0 OR X+2y-6=0O

4 possibilrties

- for 2 critical pt. P, compute
D= Fm.-l‘._.,.a— (Fys )"
‘- thewn: CASES:
® o>o.

OoR

®5=o & x=0: cvit. p¥ (0.0)
® 2x+ry:6 8 x=0: vz —> (o,0)

® v:=0 8 x+24-6=0:%26-> (6.0)

fxx >0O: LoCcAL MmN
Frx<O:LOCAL MAX

@ o<o0: sapoce

O=0: NO INFO
® 2%ty 38 *t2y=6 —> (2.2) ®

IN OUR EXAMPLE Fux = 2y EAMoOuUS Ex- g(xl,j) = Kz.._’ +x\32
Fxyz2x +29y-0=Fyx crit. p+ (0.0)
Dz luy-(2x+2y-6)" Fuy= 2x Dlo.0) =0 NO INFO

D(o.0)= - 36
Olo.e): -36
0(e,0)=-36
0(2.2)= 16-(4+4-6)* =12, Fux=+

SECONOD DERIVATIVE TEST 4o ClSSi€

crid. pts

D =Fxx-Fyy - Fry-Fyue
|Pxx Fxy .
fyx fugy | € HESSIAN

"monkeg saddle”

look neav (0,0) -» (.1,0), (.1, -.1),et+c,



.why 2nd O. Fest is true

- 1gas+ squares
[3/!4 12s)-lec / -constrained optim'2aion

SECOND DERIVATIVE TEST:

_| Fxx Fry
Compute D-l‘“ fuy | = Fux-Fuy-Fry? @ P
IF: -D>0 & Ffxx>0 = P=local min
‘D20 8 Fex<o = P= local max
‘0cOo = p=saddle
D=0 = vie info

WHY does th's work?

2=F0ey) crtical pt P, (TIF)(P) =8

Sirst, comsider q(x.4) = axZ +bxy+Ccy2, only crit. pt. P=(0,0)

ox2+byx +cy2=a (**+( %5):: +(£'ﬂl))

ot Buye(82)) +(£92) - (Ey)?) calles B30 (5 -5 )9r) = af(xe £ u)ts (

notice g, z2ax +by — dxx =2a
~—
Ay zbx+2xy Avy=b
q'jg =2c
O:= Axx Ayy ~Auy?
4o generalize, compute Taylor poly. e

How 2re saddles ‘oriented”?
back o qlxiy)= ax?+bxy+ Cy?

. Y x =[2a b x ). x
notice (¥a)([%]) [L g [5]- W3]
() () =H=
A20: 3.-30\ points 3way
A<CO: grad points towards
+he

EX: C(g,5)=x’-+xgz-bx5 R ¢rct p+ P

o) = [ r’“—’] =['7' ‘]

F5"' Fg, 3 o

[a-e
find eiqenvals/vects @ (o,0) = H=l-6 ©

LEAST S@uarEs / BesT FiT Cine:
given mM3angy pets (€T 9,) ... (xn, Sn\

minimcze £ :Jerref,z +... +error, 2

GOAL: Find wm,b S.&. Y= mx+b S “best 6+

minim:ge P(n.b):(g. -(mx.+b))2 4 (42 ~(mx, +b)z)-..

-

say U IS @'genvect: (Fq)(C) = HTU= A

Hat

eigenvect. direction tells you how the saddie is oriented in space

.+ (gnlmeneb)?)

\
mx. 4+ b X !
:- :W\(’;'—]+b[:) Min:m:a:ns 'g-(mf*f)’
Wmen+b e )

distance = [F sSquares

(37125 -rec

N find distance from origin o plane x+2y+22=12

»trying 4o minimize Jorreiscr for (o b.c) sak'sfying oa+2b+2c=)8

notice 18-2b-2¢c, so we're trying 4o minimize flo,c) =

it's equally good +o minimize q(b.c)= (18-2b-2c)2 + b2 +c?

dq9 22)
Find critical pis: where \'-r's=(au, 2/ =0
29

507 2-2018-25-2¢)+2b = 10b+8e-72 20

b=c=4
29
3. °-2-2(18-2b-2¢)+2¢ = 8ps10c-72=0

one C-P. @ (u,4)

(18-26-2¢)2+ b2 ec?

2b-2¢=0O 9 b=c

critica2l pt. g+ Some Forwmulad

a1 —J

Yac-b2

Qa2

)s7)



o 8 -
to Ffigure ouvt wwich type, Find det. o€ Hessian matrix det !l 8 .°)-36

Hen de+ >0 3 eiter local max/min, Gy, 20 = local min @ (b,c)=(4,4) So (a,b,c)z (2.4, 4) C min dist= J22+y2:4? 26

once weé have C(CP:
| de+>0]| det<o | det=0

fxx >0 | min |saddle| tes+
Exx<¢O | max point | inconclusive

faxzol 2 ?I.L AIL

i€ i wanted to Ffind max/min of some F(x.y):

3 think one var, y=x3. y=x4 otk have y"”(o)=O

i€ min/max in +the interior of regiown, its 2 critical pt Hiat IS 3 1ocal min/max.
-iF 3lSo Could be on boundary: locok @ Funckon on each edge:

-bottom edge: F(x.0) & Find extrema fr xelo.1]

' other edges: sim/lar

- check corners
Combining pts From interior, boundary, and corners, get a U'st of possivie extremes & evalvate Funciion @ these
values +o fFind crikical max/mins over $ne region
find the minimom of glx.y) = x3-33-Qx5 +8
observation: when x 500 3 y 00, thewn g(x/y) 5 00 (no max)

when x 500 3 y »09, then g(x,4) H-00 (ho min)

2b) €ind min/max vals of g(x.y) own +he square [o,1]) x[o,1] _m_

. . QJ.=3 2.q,= 2- 2\*

F-nd C.P. O x ] o] X —35 _(-’;—)-3*=o either x=0 or X=3
) ‘5"’3%:0
—sa, = -342-9x =0 x4

- a— - =0
a 3

our critical points are (0,0) ovr (-3,3)
So we down't have any cvitical points in +he interior of +the square
nex+, check the edges:

. bottom edge (Y=o, O£ x<1): x34+ 8 - no critical p+ in middie of +ne edge
- left edae: (¥=0, 0Ocyust): -y34+8-no C.P. in +the middie

- +top edage: (y=1, 0ex&1): x3.(-Qx+8 — C.P. are O's of 3x2-G:0-> x= £J3 anot on edge
. right edge: (x=1, 08y £1): 1-43.Qy+8 — C.P. -342-9:0» y= 2J3 Sno C.P. (no real #s)

So, the max/min occur on one of Y corners

.constrained optim’2ation
-/.[- regions/ bounds
[3lig12s])-lec - lagrange mulkipliers
w=F(x)
& only have +o check cvitcadl points
& endpoints

Ex: find max/min valves of Flx.y)=x2y over region R
ouer region R which is vertic@S of +riangle ul veriices (-1,10), (-t.-1), (1o, - 1)

(-1.10) (o.a)

IOEA: find cwitical pts inscde +he reqron 8
x=-1 xty=9 -3naly2e the boundavy
t6.3) . plug 2l _interesting pis into £

(o.0) -only critical ot (0.0)
yz-1 (10,-1)

(-t,-1)

BOUNDARIES made up of 3 I'ne Segwments
x=-l: gly)f(-1.4)= (-1)2ysy , <1c yslO
g'ty)=1, no critical PtS, So just ook @ boundary e+s (-1.-1), (-1, 10)
Yz 1t W)z Flx -1)= -x2, -l£xs10
W(x)z -2x=0 when x=0 -» (0,-1)
x+yz9q: Fley)z x2y=x2(q-x)= qx2-x3=p(x), 1S xS0
P(x)= I8%-3x? = 3x(6-%)=0
yzq-x: (0.9), (6.2) and ewndpeints (-I.10), (10,.-1)
PLue 1N: f(o.0)= O
£(-1,-1)= =1 min s -1oo @ (10, 1)
£(10,-1)= -100
£ (-r,10)= 10
£(o,-1) O
floa)z 0
€(6-3)=108

Mmax is +108 @ (6, 3)



Ex: find max/min values of £(x,y)=xy on region R defined by x2+xy+ y2 £3

]

x INSiDE: C.P. of € (0.0) % cant isolaté variable eas'ly
BOUNDARY: g(x,g)=x2+xy+u? =3

LAGRANGE MULTIPLES: maximin f(x.4) with resplck 10 (onstraint 5(,,,,)::
i+ torns out: @ maximin pts of £, TFis paranel +o og.
(3¢=x-038)

IN the example: set gradientS paraliel 8 +ry to Find piS where +n's happens
2p_]9 =2, 2x+y 9. 2xty
VF-[x] <3 [ki'ag): [’l]-A{sfz,
ger y= A(2x+y)

%Xz A(x+2y)
*x?+xy44y2:-3
) x
solve: A= Fiyy = waTg
D x(2ax+y) =y (x+2y)
= 2x24xy TxY ey
=) x2542 o 4=t
TWO CASES:

Yzx: x2exyty?=3 yz=w: x4 x(=n)e(-2)2=3
x2=| »x=2%1 x= +[3
(. (-2.-0 UT,-13), (-5, 55)

*¥yst max Xxy=-3 min

(21197257 - rec

LAGRANGE MOLTIPLIERS:

‘What is 2 tot+2al derivakive
cwhat S Ist derivative +est ==
cWhy l2grange mulipliers is 32 geometric Slopl

Ex: g(x,4,2)=0

- - 2= [
Ex: g(x.y4)= O vf= 2NTg
x+2ys22=18
(2%, 2y) Fzx .
xaylz| (\.e»l what is distance +o the erigin?

(2.0

Minimize: x2+y2 + 22
{2x, 24, 227 = 2(1,2,2Y

Ex: Find external vaives of F=x2423? Subject to gz=x?+H4y?+927-27 §g:03

DE=Cxyla?, dyx2a?, 2ex?u?d = x{2x, 8y, i82)

X4232: xA -» x=0 OR A=yza? y2: %"
232

yxt22zuyrs yz0 orR a: 3T «
2y X

2x?y?z 925520 0R A= ‘-‘—q’— rz 3T

QF=X9g. + A\a2vg,

9.=0
3.=0

Ex: . ~e

Ex: highest 8 lowest p+s x+y+2=12 8 2:=x?+y?

TF=40,0,1)z0.<11 1> +22l2x 24, 1)

2%z N
25 =25
2z =2
2::3:2

X+2(2%)+2(2x)=18
x=2, 4y=4, 234
Pt +wat satisfres eq.>

d.'sf:l?.'fq‘-l-lo’ 26



(3120128 -lec

INTEGRATION:
recai: singie integral of y=f(x), asx=b

fF(x)o\x- ‘Sn‘gned" area b/+
graen & x axes

W

How How To ComePoTE’?

Lpen: estimate wl/ Riemann Sum i.e. rectangles

+hen Shiiak Fhe width of rect S O,

in £¢he
limi+ you ge+ E€exact area.

Y =€(x)

i [ Ricmawn Sum= Z(3reas of rectangles)
xz b

- n
= E“‘F(k;)'éx OX>0 J‘F(x)&
RZen

from thm of calc= (take anti-deriv. of €., plug in endpoints, and Sobtract)

(f=F)z=F (b)-F(a):= FI2

DoveLe INTEGRAL: given 2:=€(x,y) over region R in (x4y) Plane., Ffind volume ‘under’ su-face & ‘above ”

2 xy-plane. .
2:=€(x.y) A
EASIEST CcAsE: R is 2 rectawgle, . base:
AcxSp, CEysad w pick (xa,4a) inside e: aA
» 3 RIEMANN Sum ‘ a eé2ck subrectangle height: £lxy)
(Y] .
divide (a,b] into ax pieces a b
(c.add] inte ay pieces "
]‘ RiEMANN : ;%', (voi. of each rect. box)
/\—b'l'ln.‘cken uP by 4y . .
3rea of sice : [fix. y)dx ¢ for @achy, csysd, Z Fxi.9) 08 = (eoyda = [Jieg)da
ya [ we ge+ 3 Siice of R R
4 area Aly) «depends
97y, slice o€ Svrface
2:((x.y)
acushb

VOLUME OF THICKENED -OP SLICE = Aly)dy
TOoTAL voL: add sices fmm y=c +o y=d
Ysd ,xzp

= (S ““'s)dx)o‘g

9sc

EX: Zaxyt+x, R: 1€ x<s3
2¢ 4 &S y:s
vol. under f(x,y) above R ‘f ([ (*:“‘)dk)d.’
®x=3
Aeea Al(y)= S(xgq-x)ol,, =[5.L":‘3+';-"1J3 = Yy +4
xrTl .

("]

Voc f (454-4\&3 = [z_.,z +q,]: = (s0+20).(8+8)

xs3 =5
SWITCH ORDER: J.(T xsu)da)ou

x| "Yr2



(3121128 ) - lec

miegrate oveér wmore mel-‘cal-eJ regiens than rectangies

f(x.y) - x+y over iriangula2r region

we wawt Sé‘(m-j)AA I(r (n,).(,)oh

Xz

Ex:
2.)

(4.0)

@e) X3 =2
Y0
fix values of x, see whak Sicé locks I'ke
33—
S ,xry)dy twe suces 7 TRY AGAIN w/ 4: const. SI'ceS
are vavr-able, ) .
X22: .- etc. x_q.z3
Xz constant Slice
ys2+d B
J, H . x4 yz2.% x2d . (o,0) (4.0)
) (x+y)dy _[(x-!:ﬂdA: [(f(n,),\:) [(33.,‘1..:‘1-2)‘1;; -Ei'*s*i*‘*u"' =:3]
Y=o R xz2 Y7o 2 1e€+ endpt. of eacw siice: x=2
*s+§5‘lf‘ / right eadpr of @ach Slice: x=y-2
= 'Tsz"zx-ez b/t slice: 3z o0 9 yz¢
n-‘l-
2:4 S(*ﬂs)JA f([ (“"3)0"‘)"‘3
Ex: 2:Xx2442
find volowme 3bove 2=x2+42 bout below 2:¢
intersect 224 with 2=x?ay?
V= E(q'("t":"))d‘“:? 8 ue get x’+y?zyq, circie of rad 2
%Sy
Rz2 x24y? s Y > Y u-x botiom: 3:-J'4-x‘ YsJy-x2
ys ¢ [q-nt fop: 5:4-’1-«-»:‘ (f{‘l-(xhg’-) )olg)d.x
» 9z-Ja=x2
r.'shf: x=2
Ieft: x=-2
POLAR: X:rcos® risx?+g?
9050 o1 kar(2) 24
#
R in Polar: OSfrg2 but what is dA? dAzvrdrdB
OtO S 2K -
©0z2x [ yz2 6:2n
< ( _[ [H-v’-)wdr) do = [ Udo:= &=
ez0 rso 6:o
-4driple ints
/[-are.a 8 vol. reinsited
[."”"7-5] - lec -vols. of tomplicated regions
TRiPLE INnTS:
‘Simclar to deuble ‘vks bo+ integrating over 3D space
—
instead of 20 reglen R T
cuver rectangulav box l€xs83 , -28ySy, 2£2=S
T

Ex: integrate flx,y, 2) =Xy +ya

fPtmg,e)dv & comes From Riemann Som Z. #LP:) av:

@ fcvbelet i
~av;
I/ point P: ‘nsrde (xi, Yy, 2:)

Compute 2s iterated integral
x=3 4 s
s
= . 2s _
l‘ I j (xz‘j#'tje)da 43 oAx 5 ["z‘s?""zsz ] sx:‘j"'?ﬂ)'(Z’("‘j*Z‘:)—ZMl%-p-?-_'g

X ez2 3=
x=3 4
= 2 2 _ 3
*!'5[.: (3x 5+,_5) odyodx = [;,‘5 +“S ] e 18x2403 CHECK:
dydadx
daéxdj
d:rr:. ovders

2 3
S 18x% + 63 dx = [6"3*'63*]. T ...7 282 %variableS should dissapear!



AREAS ReEvisiTED:

Y=F(x)
b 4=f(x)

M/l/M/l Af\eet\=jE (£x)-9(x))dx = Y _[1 dyolx
| W M/| =y xzo ysg(x)

x=b !‘dA:!JA

VOLUMES REVISITED:

EX: Vvolume uvnder plane xt+y+2=12, X,9,220

|
1
fo\~9
2S deoouble int: V= f(lz-x-g)dA
R

Y
x as triple int: vz ([ 4 43 g =[adv
R

=0 T

A MORE COMPLICATED SPAacE RegioN:

Ex: Cind +Hhe Vol. of space région T boounded by
2 =5 .
2= x% 4+2=10, Y=O vertical wall
Me—
intersect these
1) find Shadow of T in xy-plane
A Shadow made uvp of: (@ verkecal walls (L to xy-plavne, no 2as)
@ intersections of *2=" equations

Y0, 2:x%, 2:10-4 o x2 z10-y > y:zio-x?

2) write this down
3) ident'fy +op & botiom

we know Shadow: 4yzo & y=to-x2
P slo-x2

=0
(-foro)  (30B.)
prck 2 point inside R & Find which pgu produces greater value (+op)

Pz (o,1)
Yyzio, Y=o

2=10-9 x=Jwe zox 2310y
So Vol:[dv:[([ )
dz | dA =
dzdydx
R ?wx? 3
xz-§d yzo °°%°
[ur2/28) - o FFice hes
. o, | . i0, itmk/m i
xv\z? 2lways has v Seolvbhoens blc vf e 'S & solub’on r,e - e 'S always 2 Solutron

Opf “derivative of £ in - odivrection’
Fx >0




3 [w {/ T -
EX: o N flx,y) = ax+by+c
- /
1 Q/ / | C (0.0) » Flo.0)=4 > c=H
M ) C (-1,2) > £(-1,2)20 > -a+2b +4=0

|
N
~
~N
o — 20
BREN

Ex: 23 Surface whosSe x= constant crosS-sS@ctionS 2re lines but which s not 2 elane.

q(n,9,2)7ay+be +C
1 saliny +b0M)y +c (1)

9
Nx

9(x.y,2) = alx)y + b(x)2 + (x)

i€ alx). blx), c(x) are constant Funciiong, +hen we would get 2 piane

POSSIBLE NON-PLANE CHOICE : olx)=xt+l, blx)= cos(Sx), clx)= I8

if glx,y,2) = (x2+1)y + cos(Sx)a +I8

iO 62

if re'’” =rye exacHy when v,z

e'®: coso + isin® For any O. not just B¢ o, 2x)
(rel'.e)“ = rn(e;‘e)n = ’_neine

" . . ;ze
(reos® + insine)" e'®. e®z-e

EX: Find +he U+h voots of -2

-2+ 0%
r={z22 =2 n % CAREFULL!
-2 s'
Dztan' (&)= ~n *an
26”‘: 2cosB +i2s8nb solve (re"e)"=Ze'“
4o
.,rz'e;(nnnk)lq sr4e’
L%y +hen =wn = ye+2rk for some integer K
k=0: 2e = 9_7\'-2Rk_£ L D
iRly q‘,— i3niy = 4 - 4, u =T, ST,
4z e , 2 e ;
. X I® S=& x
cSn/ LR Y roobsS: §, — =& =
c Wz aget T ) w.ew e g
’ OISTINCT

Also, ri =2 » v = Yz [the positive ceal enQ)
GLOBALI! LOCAL winlmax:

‘for each CP-> Find loc2l min/max & saddlles
-compare locdl mins & loc2l maxes

- see whch s 9lesbal
-if wno CP: VF FO
c specifrc2lly  for saddle pis, +here

}K one » points o each
vf

‘S vpward & dowarard parabola

A>0 - vf Po;ﬂ"s aw35 from CP
MO . vF points towards CP



(4l2/257] - recitation (TesT Prep)

£ (Xl,-.-, *n) )

TOTAL DERIVATIVE: 2 Ffunction f: R" > R™ s given by (cmlx.;...,x,.\
T 8a_¢.\
Hen +he +olal derivative D= : 3' h2S 3l info abovt partal derivakues of .

oxXn IXn
SPECIAL CASE: f: R"o> R’

thenw DirecTionAL DeRivamive Dy f = “derivative of £ 3long a P3th in direction R

= 9F.0 =19Ff] cos®
f(x)-yz0 vF

y=F(x) TE€0as) So TFf is in direction of *sieepest increase”
/\/\/ J/- 8 level curves are L +o TFf, \f\
‘/\_'\

EX Flx,y) = height @ (x.y)

3
s

SurEACES:
EX: Cylinder, 2xis is line throvugh (0.3.0) para. +o x-ax's, rz$S

z " (¢.3,0) e y2a stay €ixed, but x changes (2long 2xes)
E@’* +ake +he cross-sechon x=t 8 intersection of cylinder w/ $that cross Sec. is a circle
7] D

of r=5 avound [(£.2,0) in (mss Sechon

] lh;’ﬂ) (3_3)1.,. 2 2 =2S whewn x=t
so we ge+ (y4-3)* +2%=2s

Compeex #'s:
RECTANGULAR Clooros: 2=x+iy b1 lo.b)

PocaR Coorps: z=rel® 2 Y
tonvert: given rectangular, = fy2,4y2 3 e=+zm"(%)

given polar: X=vrcosO.,4=rsind

FinoING nth voots of cx #:

EX: find cube roots of -3

CONVERT -3 fo polar: -
r=J37:-3 ' J

H -1 () -
6= tan ('3) ™ @ RevIEW!

3e‘"
want bo Eind e s.e (rei®)d=3e’"
3.0
zr’®® 5 then 322 2 30=-m+k2n For some int k
r=33 g = Tt2nk
-5 S 3
3 Y= x 2 i(ﬂerk

J?e where k s Sowme int.

3\52;"3, Jie” , }J?esus’ 3ze " ?
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OTHER CoOOROINATE SYSTEMS:

cdriple ints

-cytindrical & sehnevicadl coords

in cyiindred) & sprerscal

i 9 ohist. From 1ak+ode
2-axis ] I;:ng.‘l-ude
b = ("." 6.2) = (P. &,8) pP=rho =dist. From or’gin
2 cylindried |l spnerica) ®=phi = ‘fee” = angle e point makes with positive Z-ax's
. —y s ‘polaer +2” (¢=,"...eu>

t| e x é=0 ‘wnorth pole”
@:=n *soutn pole’’

< ,’ (%9, 0) CYLINORICAL: OSvc¢eO SPHERICAL: O¢pcgee
0s56<2x O<c@gm (1ati+udle goes vo 120°)

el e 0s@Osz2n

EX: (0,5.0) in vectawngoulawvr
Y cytindrrcal: spwerical:

x =S (s.%, %)
6=z
z
2=0

(5. Z,0)

Ex: (0,-S,0) cylindrical: spherical:
3

(s.%F,0)  (s.5.3)

=
ex: (10, 5, n) in

ConverSION FormouLAS:

_ &l efes

»®
X=vcos® 2:=pPcos
Y=rsin© vcpsingd

= ’x2+$1

P=J22 42
©=4%+2n"' (%)

= +tan-! (%)

(o, Z) =

vec+: (-

sSpherical — what are rectangular coovdinates?

svde view: toe view:

Y
(1o, w) »n
x *

sJz, 0, §J3)

n

lo-‘i

RECTANGULAR —— C(vLINORICAL
Same 3s polar (x.4)én (v.0)

2z
RECTANGULAR é¢—— SPHERICAL
X=pPSinPpcos® | p=]x24ytea?
= . . J X2 442
Y=psin® Sinb ¢=+an"(Ts
e=pecosp

)

e =+an"(%)

some Surfaces in Cylindrical/spherical:

r= constant: cylindev with 3x's =

P=constant:

cone! ex: 2=J"2“‘32

@=constant:

INTEGRATION:
EX: ice cream Cowne
volume of vegiont above cone

2=Jx1+5= but inscde sehere
x4y +22= 9

TCE CREAM CoNE IN SPHERICAL:

O0&p<3 i.e. <l'r.‘plez-' )
» n RI4

°$¢56—( Vs fdv: S‘

Oses2 T 8:0 =0 p:=o

nt has constant bounds %

I [e2sinpdedsde

(i) Fvose) [ )

2-2%'S

spwere centeved @ (0.0.0)

~ry exception: @z 3

xy-plane !

dV in other coordinates:
(femfﬂdef'-' in polar, dA:V‘d"Je)

in cylindrical: dVs rdrd6d2

in Spherical:
2 /ps'n¢d9p¢l¢

-
P
S,
/d¢ g zrae =PSingde LiTTcE Box ©of Dimemsions
de

odp x ed@ x psTMO
dvVz= p2sin@® ded @

2n (s |o) ($£3]2) = Zrll-g)-qi
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CycinoRricAL Cooros: SeHeErRICAL CoorDS:
2 . ~
(2,r 8) lp. B, 0)
replace x8y by P=distance from orgin
d® polavr Coovols
@ -= 2ngle to vorth pole (121 # +odle)
D 2re2 element in (osps~w)
£:Lajoc°°”ds s 6= 2ngle in +he xy plane
lindeical
VOLUME ELEMENT: rdrdOdz (same 25 cylinde )
(0co6< 2x)

VOLUME ELEMEANT: p2sin@dded ¢de

Ex: Compute volume of a spwrere of radivs A in Sphercal Coords

£
& -:.f\* e fis 4 T 2 .3 Ux As
_[[I 1-p2sinpdpd Pdo = [r§A3s:n¢d¢de = f%As[—ms¢]: ol® = [§A3[| -l-n)]de = ! A e = 3
000 2 o o o
TRY SAME c3alcwladton, but cylindrical coordls:
rez-piane A e Te T _o¥2 |°
‘. j r dedrdd = f J 2cJAT-vE drdB = ff Jo dudb = [ a | e
o] ; Jat-rz © o u_l"z o A% o Az
2x 2x 3
‘v #r-coowa: must -(A’ 1)3'2 o db = A—3d9 - ZRA . "'_’!AB
be @! : 12 312 3
2 ° A? )

known-monotone S hard!

EX: Suppose hemisphere radios S wl density ‘-‘(w,g,a)= Jxzegs .

what is i+ts volome?
want o integratre 1/ over +the hemisphére in tytindric 2] coordls

r2+ 2%z 52 3vwl 220
llS-it 2

25- z' 2
,_;]m_, I IerdeolrolE = f I fawrda
4 © o
o

- 3pplications of integrahon
s change of vars in muliPle integrals

(u/10/25]-LecTuRE 22

APPLICATIONS OF INTEGRATION:

(D AVERAGE VALUE: say 2= €(x.4), look:ing over some regien R. .m
what is 3avg. value of some regen F on R? . .-
pick pts. in R. Avg @ T(xe9d*. + F(Xn.un) i (")

n == o
A

25 w2007 (cover every point in R) u

Move Suystematic: break up R into pieces of size aA, pick oné porat (x:,4;) in each sSvbregion.
& wn

get ‘Riemann Som ™ : Zf‘(a:,g;)-&
s

. L._8A

notce: Nn.aA=(Area of R)» == Ares of R

S — Z‘Clx.,g YaA

Plug n, get Ffavg R Areaof R is
J\ For 4= f(x) on [a.b]),
2s aA—->o0, gqe+ ¢ 2 flx.4VdA 1 b
3 WIT Aceak R o Fava= g5 L Flx)dx
integral of Fonction ¢ avg. val of-‘)(s.‘ze o")
over geometric thing 6= fFal ( € overg



(o.1)
EX: le+ = upper half of disk x2+y?2 <1,

What S 3vg. y-val of ek. in U? G.0)
-1
(2 little less than = based on logi) Area =g n
CL Ysrsinb

| LY
\/avs = Are2 of U ‘-[YJA =z J _I‘(v-sine) rdvrdf
00 r:zo
)

3
L} .
= 3 ( fs.nede){f,.zd,> = % “ 042
° °

Avg. x-v3alue of pts on U? O by SﬂMME*l‘N_-s!

@ M2ss: object of variable density. integratre to Ffind mass
ysx2

Ex: (2,4) 9x+2
(-1.1) qlw [5_]
Suppose R has dens.'h, 5("13) =kx? m?

(5[".2) (MZ) =9 (per unit 3'.33)

Mass= | d(x.4)dA

R
2 %+l
63
Mass = [ Kx?dudx =... = ok
e %= center of mass= balance pt-
X
R®) Cewnter oF mass Xz | x3 x4
é Tm;(%-%xi)=0
Zmix = Tmix:
- Zwm:xi
GENERALIZE: for 3n object R of density > X= T —+otal mass
d (x/4), +the x-coord of center S
: fxd [y YdA X
0f mass s == 8 ™~ o d (x4 %=
fam  Jioxu)an
Ex: Pind CoM of object fFrom befove
.rx(kx’)dA ‘rzj\uz 3adud
%= IR X(KXx")an . I- Jxt kx3dy x_ 2
fakx2dA 63 = (& ﬁ)
20 so cewnter of mass is 2, 49
__ Jeulkxz)da ["ng
Y T es_ | ma
EK
CHANGE OF VARIABLES IN MwULTIPLE INTEGRALS:
(S 2
Ex: ellipse (%) +l%) =1 /;—“Area?
& sofiwgerars >
A= .r f dydx ... HARD
=0 yz-bJi-(xla)2
instead, ‘transform” un't circle into the ellipse
x2ey?z .
*97=1 (x 9) A= fdA,_: S\obdA.
Ra2

gl
Ah S /— Jb sab(Area of unt circie)
’ bdx -
N NS
R2




.vector F:relds

[ v, grad, curl
Lulisizs] - lec 24 1. beg'n 1ne ints £aistad.com fvectorn

VECTOR Fieos: Function F: R2 » R?
for eackh (%, y), we visvalrze F(rx.y) as

vector Coming owt of +hat pi.

%
weve seew gradient Frelcds e.g Ple,y) =x2+42 > SFlx,y) = [2 ]

Plxry)
notation: F('(«g )= PCxy)T + Qleey)g = lO(ey)
> —> >
—_— — | ——
£x: le.5)=[3] IR, i el
Floy = (2] s oo
Fx)= (o]
|'='(x.2)=[§]
F(‘h"\’ [.DI]
Two

CONCEPTS ASSOCIATED w/ wvector F:elds:

® OiverscencE =

‘ne+ inflow or

ocvtflow C 2 point”
.connected o Fflux

@ CurlL = if you drop 2 Piyoheel in the Field. winl i+ Spin?
cin which divection? how Fast+?

3D VECTOR FiEcoSs:

F: R3*5 RS2 same 'dea 2s 20

[P(x.g,z)
=2 Q (x.9.2)
notation: Flx gy, 2)= R (x-y,2)
How To CompPuTe Oivercence & CuRre?
cintroduce d:FFfrentradl opera tor
2 2
S % - | 9
2 ovr v =
) 9 '%
H ) "
nabl2 g_z 2 o€
- o O
we've 2weady seen TF= [2 [F= | 5
9y 3y
. [8 N L N 1 [’
given 30 F = Rl, we can compute div Fz 9-F = |ox, o4, a;]
R )
Ex: ?: [:;]=F‘" d:vF =

- P -
20 CuRL: given F(x.4): [Q], 20 curl F= Qx - Py

)
Xt 539 =l+|=2i

“Draw & bow around pt.

pts on sides of the box Further From ovigin have

longer veéctors +than pts

. 2 2 -
Ex: E‘=-[3] > corl Bz Fnl-*) - 3;‘3) =-2

Tl

if gou drop 3 Flywheel! v Fretd,

spin Cw blc wnegative Courl.

closer %o ovigin

v
©

,
olo
¢lo

v
X

\4
A

v
~n



P
30 CouRL: ﬁ= [2] . Corl a: Gx&
T 5 Q
= %5 39_2 = (Ry-Q2)7 - (Rx-Pa)3+(@x-Py) R
P Q R

INTERPRETATION of couwl F:
4 OIRECTION: direchHon M which you hotlol the Stick of the Flywheel

flywneel s.t. spnS Fastest C(Cw

l MAGRITUDE: Eastesk sprn rate

[Ullel28]) - recitation

du
in one variable: Start wl x; then Switch %o ulx) “ duszu’(x)dx = gx dx

v

9§U,V)| _ Bx ®

Mmove than 1 var: start w/ x,4q, then Switch to usulx.y), Vvzv(x,y) ~ dudv= |;(,.,5) dxdy * del'( 3
I Ep)

Ex: c2lculiate 2area of region bounded by Y2+ Ax"+ 6x2y +x2=|
(HMINT: find coordlS U 8 Vv Sk, R in coordS s unit circle)

‘ 3(u.v)
take v=3x%2+y & v=x, then f dxdy = J\ dl¥ey)| dAude
R vk
cire.
9 (x.9)
‘alvn')l ,de 1 o }='
n 2n
=[ | dxdy =',r [rd"de s f 'z" dB’E
unt ® o °
cirC,

VE(ToR FIELDS:

N
Y

W
e’

ExS: map of wind direction/magnitude

gravitational Frewd 1
- Nl
Ex: Fix,4) = XT+yf “Sax

'e

‘spout w/ nater oviwards”

Ex: Say we have large object of mass ME (0,0). wriie
qravitation2]l force on 2 Small mass m (

GMwm
r2

e vector Frerd CorresPcnd-‘ns 4o +4he
2ny given pF (xiy) in Ferms of

-

P8 6, Mmool F =

®(xy) z-xT-y5 - 3lways poinis nwards

-
% is a3 vector Freld with unit 1ength |
So 6":;‘ # is vector Freld i want.

Ex: wWrite down 3 vector Ffreld describing water flowing in circle CwW @ constant seeed

-Circulad® moion @ Consi. S\’ﬁe‘(

—P‘(+)= (rcost, rsint)
V(4) = (-v~sint+, rcost)

PV = - r2sintcost + r2sintcost =0 ¢« pPos. & vel. L
C each pt (x.y) we want ﬁ‘(x,-,) L Flxiy)=(xe9)
how +o cheos€ a8 b S.t

so -ﬁ[klg) s Blriy) (-y, x)
mystery 1F+) ) = Jr2sin2t ¢+ r2cos?t = v

c Ox+tbyz0? A: Oz-Y,bTIX 0~ 3ny muikple




-line ints vs. parameters zaton

“Circuldtion
Lulizizs) ¢

A Lemgd\ Ruovmder:

e C gwa w 2D« 3D, & v
PSR W «g ), .‘«;s;

A (lagh & &43 S ROl

Lice Tomls .

ey w2D + ?(\\’i"&

o 5 <= s

Ay v Lot o4
j;ne\ Fesa

\ —\";" G\A‘ Q PP | Cwine. w2V o 3D
b LR 3«:. n N
{:r{(y.’\.‘( 1;\ LR o

e Cwrn
{f}a\\

spha w C.

D&ch

‘R\M S- s ¢<vw\ o3, "... > S‘CJ;

| SO ES 'g(v,\- x-l~t7

(5% Vs'\h\' Q’w« ('Q Y= (M 3)
PM\QC x=tel y-t Q‘*“%
o= xewy = (20 VDY (et = % 2tr)|
&= |re)\de = VERTY e

on C

11\
4 /:‘/

EX: compute Sf. ?J?

LN

-4
ﬁ(':5)= [ *]- - L)

[3(056 N [-Ss:nb
ParAMETERIZE C: FH)= [3sint Osts~ » F(t)- Scose]
Fleoy) = FLR) - A([3e22]) .f:;;

-

so [F.a# :IF[!‘(H) #(r) de
[

LN

-an blc reverse an (P(+)) s

C.=-C - J\Ed?:-

Same but CW:

{£are-

(3

examepte,

we often wve'te

(F.az
(3

C. «C2 = Follow Ci +hen Ca

CircuLATION: line inkegral avound

NOTATION:

R EN\ = S:(«‘n?.ph(ﬁ q = Sma VWi

Sﬁ d - G\l-»kh?‘y“uuw.q\ AF...-k

hed
St 15 e, Citres

=\Fd

For nancontdedr %ﬂc Rv\\ F A“‘) Vel Cune C

= (IR «a)(13|
o ehede vak v ?ww« Suwh ¢
3

ST-’ e

Ay = ¥ (+2) - r'(*-)

h—)!

lcop, oriented CCW

1P\ ©




.path-ind. T conservative seirculation: Free = no couri

. een’'s +hw.
(ulzzi2s]-1ecture — [ ppiicatons

-->
et F be 20 or 30 vector Fieid.

. a is conservative FF E s qrad:ent freid
(i.e. Fs= !‘7‘3, q s caned potentidl Function for F)
- F is path ind. IFF Lne integrals ,[\E'.d# depend onty on Stark'ng & ending pt. not specifric path.
c
-
*F s circulation Free iFf F.d2=0 for closed loocps C.
§ 2Q P

(scala-) ©

- given Fz<P. @Y, 20 curl iS Qn-Py (part:ai deriv) 3x ~ 3y
F:<P.Q.RY 3D corl (vecror) (ol B = SxF
; 33 ; (_S_R_ Q—Q)A 1 - E ~ 2@ Y a
P a R Ry - @2 Pa - Rx Qu - Py

-
THMm: (¢ F is continvously d.FFerent'able, then +he Pol(aw-'ﬂg 2c@ €guivalent:

) F is conservathve

2) B is path-independent

3) Fis circulation-Free (integrate ctosed loop=0D)
4) curl F= O (20-scalar) , cu-1 23 (20)

couvld prove
21l of Fnese

EX: path independence - circulatron Free
§’?‘JA = .{:: F.d2 =0 (closed loop)

‘¢an go backwards
another path thdl starts/ends @ A= don't go anywhere pa+f,

c

Ex: l-=\ 'S conservative- F 'S path -'nJEpEncleni-
“Hais Eollows From Fundamental +thm. of Line

if F: Va. then Jzﬁ'd}."’:ss-df:ﬂ(‘)-slﬂ)
AEr_ e g (doesn-+ depend on specific L)
EX: conservaktive=> cirl F=3
say F=<P.Q,RS
e |!=v5, 9= P, 3$=Q, 32=e
Bxy=PY =9y s @x > 2 component of curl=0

lntegrals

Bx2=P32Q34Rx » 4 component of curl =0

952=Qa=gzs=gs_, X Compoenent of corl =D

Ex: curl F=D = # /s conservative
F =] ::;'?:f;:' 9% check ‘cross paviials" are equal
x3+y ;: :‘-ﬂ?-::: Qx v
2=23x*z-Rx VvV
Q= =Ry v

Say

1et’'s consiruct the poientid) Funchion g. (via *partial ants o-FC. ")
AzP 9= IS»“" =J\(53¢3x22+§)dx =~3’+x32+ mx+C (g, 2)

35:0 2 g= [a,dy = [(2xy+ 2429)dys xy2e 52 +¢52 3¢, (x2)

93:=R2g=[a,da=[(x3+5)de = x?z +u2 +C3(xy)

So.[g(x.y, 2) = xy? + x32 +42 +lnx+y2+C |

GREEN'S THM: (onty in 20) e+ R = Finite regron ‘v xy plane
C=2RL

14
weite 2R Ffor boundary of R, or;ented CCw

-
1et F =<KeP.Q)

1 - - - ble
.'n';-%sral §F'df 'I(QN' Pg)JA ?,?*u !
€ s R
Pdx +Qdy  corl F(20)



3Q _ar
equivalently, dex + Qoly = "[{ax - a)"“‘
or $Fd#: [leomn Prda (vector Form)
c

R 20 curl
azx  (3,3)

. Ca
Ex 9= x2-25 Pz(x+y)T+ (2x+e”))
(o.0) ' notice: 2R=C,+C2

Green's- § F-dfz [(cort Flda Qux-Py=3-172
CitC2 R 3 x

=fsz=zlArea OFR) s Zf I dso‘x
R

°o x2-2x

Luiz3128) -rec

LINE INTS: given curve C, paramererized by #(4), atsb, how to integrate
f fds (cdds= Ir‘(+) 1 A E)
c

b
: f”rm) ERGIE
-3

othwer Eexamples: f&dx = f&‘(rm)x'mde
[ [

[#.a2:

b
FlRh) -d P (+) ot = fr-‘. (RB1e)) e r' (#) + F2 (P(+))- ma' (+) dE
c -3

0

2re these indepewndent of the cwnoce of patrh?

porentrail

/

--
CONSERVATIVE vEcToe Fierp: F= vF (f = potential eneray From gravity)
Fzof is gravtaronal F-eld

blc energy S conserved)

INDEPENDOENT OF PATH:

THM: F is conservarve & I;i-"-al-'-‘ is independent of path b/t two endpoints
& §¢-d$=o for any closed loop (circuiation free)

closed
loops

#onlty need +o Find 4 of +wese 4o prove 7

Curl (ﬁ):o

NS THM: in 20, F R S a region with no holes (“simply Connected”)
o Fx
ax

oF,
then §?-J? = fc«.u-l (l?)olA e in other wovrds, gF.dx +Fdy =£E
< R

t

Fye=b
o

U equivalewnt
conditions

dA

ta™'y
Ex: 1et C = circle x*+42=4 oriented CCW. Compute f (24 + Jatx3) dx + (sx+e ) dy

P(#) = (2cost.2sint), Osts2x

d¥(+) = (-2sink, 2cost)

in particulan, dF @ a point (x9) s jost (-4.x)

then i wank bo Find F st §n$“?=£i(-sm)=§'l—'15dx+l'z*d9 2r 2

© O

2

o

then for F:l(2y+ Jared, Sure™'®), we get [ corlthran = [-34a = [ [-3rdcae = [-cdo=[-127]
(/]

r.url(i;): :—:’ - -99—::3 =22-§=-3 Drad 2

EX: integrate ?(x,3)= x4y, 2% +yln (cscfi-ys )) over _Cll_ halé circle of radius |

TRICK: f + _r = f?-d;-‘: fcurl(p)dA & can apply Greens ble ctosed curve
" > A

a
1 [} 1
- L}
IF-d: = r("'zk)~ <dlv°> = ]‘xdx = "';—] = O
— -t
> = oAr -t
F(+)= (r.0), -1t <l

e

2and boundary C ccw



ICurl(F)dA = f{n-z)o\A = f—l dA = '%

a

a a

-greens Hhm

[ult24 (24] - lecture 28 -/[ P3ram. surfaces /svrface areg

P(x-9)

2 -
REcALL: F(x.4)= [G(x.g)], F continuously diffrenkable on boundary of 8 inside plane region R

C=9R, oriented Ccw (region ‘on +ne 1ef+*)

then Green's thm says (vector Form) fﬁa,‘-‘ H I(Curl Frda
R

(c125Sical Form) dexi- Qdy = [(ax-Py)da
R

tidbits: (O can prove immed:ately that curlFz0 D F ;S circulation Free ble §F..ue.- f teur1 FYdA =£OdA 0
[2 R

®

can jush'fy idea that+ 20D corl measoves ‘circulation @ B3 point”
iF R s ting, Pfunchions of R are approximairely constant
in particuldw, for (x-3)ER, Qx(x.-4) X Qulxe.90), Pylx-y) 2 P(xe,9s)
o = Qx-Py 2 constant
thos iF-J?"= £(°"P~:)JA 2 (@x-Py)(xe.9a) - [dA = (Gx - Py)(xe.u.) (2rea of R)
R

So cire(xo.40) X (Qx- Py)(Xo.B0) with equality as (area of R)>» 0O

you can often calculate areas of regions uSing Green's Thwm

(see vrecitation 21 handoot)

PARAMETERIZED SuRFACES:

for parametrerized curves, we had one pavametbrer & , and
rva b 2 : x(+) FiR'> RS
tokal dervative D& is 3xl matrix ('5'“-)-] - .'._.,‘+, -
2'(+) t— F(+) =
for parameterized Surfaces, *wo params uv,v: :IR?> m3
% D x({v,v)
du v [‘;] — F(u.v) = | Yo, v)
22 3y 2(lu.v)
ODf is 3Ix2 wmatrix v av | =7
82 22
v o
[i] & ¢-[3
ex: plane spanned by A: s] & b=[2
T 3 4
N z ! 3 = =S92 +715 + r=a
axb= |3 2 !
eqn. of elane S -Sx+74y+2=0
x
. 9
touldh parameterize as 7 (x.y) = [Sx-'lg-l check:
Ov: +ake linear combos of alb ~s(2v+3v)
2 3 2043 v x (v.v) ‘7(04- Zv)
S - ! = | v+ 2v 5 . = 0.
" lo,v) = M[3] +V[f] [3u+v [':i:':)) + (3u+v)
Xu Xv 2 3 get two tangent vectors to surface,
= Yo Yv| = "2 -
here, OF ae By s, A8 A
V=0 pszt us

$F. o

circ (xo,4,) = (3r€3 3area of
ofR30) R



Q: what s surface 2area of pilane fFor Ocuc3 OSvVE2R

[P, x ™) = 2vea of paralelogram

dtake 2 ting paralelogram

2dv AS = 1:+tle prece of area of suvface S.
v
Foau ds=Rdo x Fdvl = |7 x &) dodv
vs3 v=2
surface area = fds [ f | & x & ] dudv = 6-5J3 = 3003
USO0 VIO . ’

l¢-5.7.1%) = SJT (+ ble fiat)

‘Surface int
cfluox int

Luizsl2s] -lec 7, x Py for various su-faces

[0
SURFACE INTS: S Surface in 30 pacam. by ;‘.lu.v)=(g((_:::))]

Iast Hme: Litle preces of 3re3d = dS = A, x ryldudy
given fleay,2) defined on S, we can comepote sF(*'a,z)dS ff(-’(xcu,v) ylo,v), 2lo,v) | 7ox v | dudv

Con

x(¢)
Y(es

back o line inkS For 2 moment: ( parameterized by F)= [?M] astsb

b
-/::\ IFtng,aj ds = S‘ Flxts1, ye), 2LF)) I?'U-)cl(r/

work = f((onp of F doing C)ds= YF F s w?
L Ew _ (s 2 :;n‘

T:ldny - JF- jmny 17N dE = e gaeci.

Feux: surface S, vector €€ld F Jdefrned on & near S
R‘h uncék nermal
”\Y vector

{ (tempema} of F -'H“-avshu S) ds \) +wo poss ble KI"S
L

-

Flow of F through S = J"‘?-KJ‘JS
S

-
NoTE: have to pick prientldton of S, i.e. conkinvous cwoice of N,

-h
e.g. spnere centered @ (o.0.0) a:;ufward erieniatons N oointing away

inwWard or.en{-ai.on Frem origin

given param ¥ (v.v) of S, Po, Vo +2ngent +to S, so Fux Fu iS Norma|

+hen Flux = fﬁ-&'ds = {(E(r(om)' IC;;N)'I‘., xro | dudv
vzd vzb <p, a). <a—, ;%)
3 J e (Pox @) dvdv = (Faz
¥SC via s
oS —
- 5 & ™ flox
O I T T 3y se 28 ax
NoTE: Foxvy=| 8 3 o =|3 o[, |3 3, + 9ly.2) o | 3Az.x) Alxen) o
ax 2y 22| | 2 2 ox[J 4o = O 2o 1 ¥ 3o
v ov v v v v v
) L
F=Pt+Qg +RE dacebian i acobiav

R aly.2) d(2x) 2(x-y)
F-ol§'=<P.Q,R>~<ato,V), a (v, a(wv)>d°°‘v

in change of Vvariables dxdys= _a(:_"?_))dudv
JN

24P, Q,RY - {dyda, dadw, dxdy) erox= I Pdxda + Qdadx + Rokxdy
(ctassical Form)
(o,o,g>

LCP.0,R>



b
<
Flux €x: cylinder ¢23  -S<2<§ < 19
x recose 3050 x
- s : -
[52] = [ r;e ] =(3§"°]=r (6.2), DcO@<2x

. sc2sS
find Clox of F =4f thwovgh$

Ok
-3sine o . W
Vo = 3259 Fas|V], Fex¥: (3cos8)7 + (35in0)7 40K

-

F(#(6.2)) = 0% + (3sim0)f + Ok

S 2a S 2n < 2n
flox = SF.O\-‘ = S [ ¢o.35:n6,03-(30s0, 35in0.0) d62 = j g Asmzededas = (S Az—) ( (a (*,_(I—COSI-O))JO
S 2z-§ ©:0 s ©° -S o

=10 (a(fe-4sm2e) 7)) [0

. mov@ Flux €xS
- ¢ Shortcuts
Lur272/125)- 1ec. 30 /g v S

div. Fhm
‘Sphere
cone
2
FLux Ex:
ConE 2 =,}x’-+5’- , O£ 2sS
orented b

vepwards *

Flx.y, 2)=<{xy,0) find Flux of B #hrough core
Clox = _E?-d; s I?(:(o.v))- l:uk l".q)dudv

parametrize curve: ZIr in cyrndrical coords
(r.0.2) v (r.®.¢)

ovr g2

<
so P (r,0)={x,y,2% 2 {rcosO, rsinb., rd

1 3 R
-
Cex Fo = | cose sin® I = {-rcosO, -rsind. r

-rsin® rcosO O = ¢{-cos®, SinG, 1)

- V
F(Plr.0)) = {rcosO, rsine. OY
2rng

2n
- -1 - |
so Fflux = I‘:- (. x % )erdd :J‘f«* (-cos2@-sin20 ) drdO = - fde fr'.l.- = -2x (_% 53) =|%
cor o 4 >

oriented vp

SPHERE FLUX EXAMPLE:

sphere of radivs 7, center R origin, oriented out

i ’ X sphere: p=7
Fix.4,2%, Find Flox phere: 2 7s:nPeos O
param: r (4, 0)= | 2sin@sin®
REMINDER: x=psindcosd Tcos @ £
Yyspsin @s'ne P r s T X Sindcos 6
R . n 6 *Te* | 2cos peoso Tesdsine -7siap | -y Sin@sind
= zpcos “1sing sinG Us:n b cosO o = Hasing cos ¢

TN X 25in PcosO
F(F(e.0)) = [ ‘-“] =|?2sin@ sinG
t 7‘-’5@ METHOD 1: Pluq 8 Chugq

—
n
o
42
n

f 'Iss.'ngp (sin? P cos?e esin?psin20 tcos2 @ ) dopdoe
spwere 4
2 =
S‘?;s:n¢a|¢a|9 z 73(1.’.d0)( S‘S-"\bdd) - Yx?
° ° =7 (sA)

vol. of spuere of rad R: %RR3=%(§RR3) = 3 (vel)
SA : ﬁ(nr‘):Zxr

Method U2:

@ use fact +hat F 8 & ace related



use Fflux = rF oAS J‘(C“ Ads

A

in +his example n are parallel.
so F-& = lj/@s’o B ’x=+5= +22 =p:=F

so Flux = f(p.n)ds :j‘:as = 7(]‘45) = 7(SA) = 7(ua 72) v
sph s [ P
SA

METHOD 3: D IVERGEANCE TdHar

: F= . 2P _ 3@
ReminOER: given Feld Fs(P.Q.RY, JAdivF= 5, + -

THMm: et S = closed sorface

S=2T ‘“boundary of T,
+hev\/-fF a8 = I\(d-v F) v

when surface is S39T
closed

Ex: S: sphere cad 7 or:ented out
i?:(mg.a) - d:v F = 3

Sphw. ins;de

(4i30/25s] - OH -tes+ prep

@ y=Ir [

region
Xz O ‘3.;"3\; ¥<0 &) 4=J®
2=2xn+y
12 54y +%
X+2 < 334-2 (go‘ rid of 2! )
Shadow on xy-plane
12-x%
“ q
in terms of x: [ [ ,[
° &
in $erms of 9 would have +o break into 2 ;n+e3rals'.
@ 2) L(g‘-l)dxdg bounded by x*+y? ¢|
b) Jeosody v B zeospos ...
(-1.2)
@, ' |
) \:\l-,e) [xdg param: rx(f)-ce“: = r t-bot
-l -t

F): (E,a+bt)
* chanae of y_is same -ls kel
° €ach segment will be cancel

¢ if Jydx, would be @ blc height mattess

< {F func. swifted. weuld change (idy

oriented ooutward.

et ":‘ be Field which ¢S cowntinuously adiffrentiable on 8

1224 Jx +x

As.o€:

T=Space vegion inside S

D:versence Thm = flow = §?,d§=r3dv= 3(vol.) = 3(§'R73)

X+12 =3y e2n+y > 123 Hyex

2evo.

inscodle S

-
Similarmy, (F F is Always L 4o
sorFace, +hen F.H =0, so
flox= 0

e.q. S:zspuere, F:zdl-4, x 0%

vpper bound for 2 over (x.q)-lower bound For 2 over (h,j) dxdy



® y=2x Ys2x Y=-x+| Yys-xt2 Usx+y VE W
94s2%

5:)‘
Y= X 94 =2 Y= -x+| sZ-xt2
"H| v=2 vs| vz2

Yys-%X+2 2 2
yz-x+! make fFunc.
in $erms dudv
" o¢u8v

® v) .
P/"/

[Bc.a# = £(a) -Flp)
<

O € circ  Eree !3F~o\i~‘ z o

F is oS¢ (-‘ronserva“"e") S eirculation

CGree

(4130725 - rec- test prep

we qet 2 vector F‘(x,g): (F.(u,g), Fa (x.y), F;(x.g\)

VECTOR FIELOS: 2+ each pt (x.y),
Flowing @ P+ (x/y)

think: how water s

A o 2 9 @

Ex: F(x,y)= [x-9) '\“;:‘—v 3= (a—,“s-._’,a_g

DERIVATIVES ofF FuncS/ VECT. FIELDS: = = 9 ofF of

e ) Ar oFf : ;
- GRABGIENT: if F(x.y,2) ¢S function, Haen sradie'\. is vF:(a,.' 9y . I ( functions > vector F.elels) c 5 g
9F2 2F: ; +: ) = &% A
. CumL: 20: it F is vector field, curl Pz 3x -~ @y (20 vecter Field o Function det | 2 3 st
. ord Snfc[2E2 . 3R FoF R
etd F=(F..Fa, F3)w» vector Freid YxF= | 35~ 55" erc.

30: takes vector F
oF: + oF2a + 9F3

- DIVERGEAKCE: takes 320 vector Figld F=(F,Fa F3) ¥o T-F= 9x = o9 e

—

b
LINE INTEGRALS: j‘;ds means :  parametrize C by A), astshb, inen !Fl?u)) lv""ll'”o‘l:
c n
(x(+), 4+ ) ) = (. $h)

b
fedx = [e(@m)x' (1) dt
Jean= ] i (#on1=[[BE T (3
! F.dd = Y Fidx + Fady + F3d2 = [:,('—“)))"(p)i— Fa (r($))y'(+) + F3 (r(+))2°(+) ot

o [ 3

wen F=FF for some Funciion £

13

2w especially nice line tnk: {F-dv‘-‘ w

(‘7 is conservative” 2 °F is +he potential Function”)

= q
FUNDAMENTAL THM of LINE INTEGRALS: fvP-el:-‘ = £(q)-Fle) /ac/'
C P
>
F

how do we know if F is conservative? i€ so. lhow +o Find €2
e curl(F)=0
e« P2+h independewnce: iF C & C' both paths from p 4o q, then

. circolation free: ¢(f C iS closed loop, +Hhen f;:‘.,m:o

2 - (=_F 2k 2¢
i€ F is conservative, how *+o Find F s.t. F=TF, i.e, (F.,F2, F3) = \ox., 3y, 92
£= fF.dx +C(y,2) + some Funchon g,(y,2) blc for each €ixed Yo,2s, Fi.(x0.Y.,20) & F(xo.Yo.2a) 2are now
fonctkons of one varia ble, so
- B Founcti x,e
F.j'r-‘zdg + C(x,2) + some fFunction g, ( ) flxo. Yo, 20) = J‘p,(,,’s_'zu) +C for Some C

F_—j Fada + C(x:y) + some founction ga(x.y)



CENTER OF MASS: given region R with Some density P, Find Com.

Find x.4y, & 2 coords. seperately
e x-coordinate of Com s Nel'sln!-eJ avg. of x-coords of pts in region

f xpo AV
- ‘r
YgPdv
CYLINORICAL- SPHERICAL: r AREAS:
2 V rect: odxdyd2
,c
& D cylin: rdrdbdz
a 9
RECT ) POLAR: A 2 spher: P2sinp dpdBdP

.extended Greens Tawm
-decaying vot. vect. erelds

(5’6/2$]-Iec}w~e/’ -ewtended civ FHam. '
-dec-ag hs rad. vect. €retlds

back *+o 20 greens thm for 3 bit:

3

Ex: Fz{-y, x »
inteqrateé around
C: x2+4y2z-R? cCCwW

1) direc+ way: $Faz F(#) = (Rcost, RSiat)y, OSE £2x
c

2 x P(+)z {-Rsint, Reost ¥
§"°“'-‘L Rdt < 2xR?

2) greens: 5?-&:‘-‘: _f(cw-n F)dA = I(Q:-Pg)dA = fzaA = 2xve
in

ing,

s fo8 X . -
Similar Ferd: F= <""*3": xa+3z> = ,-z(-",x> , r= l,‘t..:,z

1B1= =1< |=hv =+
Fl=s 2 '3,") S erav =% & vectors get shorter 3s you 9e  away from origin

integrate around C: x4y ?=rR? same ¥, 2’
o _ /8 X\ _ /. Sint cosk
(ACIRES R . gz>'< R , T)

then F(20) - #(s) = ((E28) (-rsime) + (B55) (Reose) =1

kX
So, $F.dF = |1dt = 2n, independent of R.
3 o 3 x (xt+y2) = x (2%) ) 32~>‘7.
2) greens: QOx =Py —> Qx7 3% ("""‘5‘) = (x2+42)2 T (x?4y2)?
2 -y S(xreyr ) -(-y) (29)  y2-x?
Py: B4 [ x2+~,t> = (x2+uy2)? T (x4 y3)?

2 s sSwevrs
. @x-Py =O. So. Greens Thm S345 &p.,,l,- :fo: o, moT 2r - we go+ odifferent answer
in

* Yyou €3n only 2apely Greewns Tihwm +o continvoosly AE€Erent’able cCourves /€:elol — #his is UV\G‘-GO"'SI"\f
3 I'ns:'Ole C contarns lo.o)
-
domain  of F=R%2-%(c,0)3
| NoOT simply connected
closed corve
__+__ 2ny €@ o can Find n(2n) whnevre

can beée shrunk h!le Nz winding H
| to wneothing




which F s Jdefimed wmoust be

Yo vse green’s thwm, region inside C 3and on

ins:‘de C.

ciccre centered @ (o0.0), fully
we know [ F a2 =2x
[
/s
let R =region outside C., inside C /
1) 2R is made vp oF C 8 C, /
/
in_Fact, RHR sSays we shoote orieat C ccw but €, cw (when considered
wrete R =C-C.
blc R does not contain (0.0). F is defined everywhere so Greens Tum.
$7.az
F-d? = [(Qu-Py)da = ©
C— -»
R R —5 f So fr .d2= 2«
(3
¢ Fd2= $Faz -§7.a2 =0
c=c, < c
| —)
Y
w=o: f:.o: {-9.x) corl Fo ¥ 0
2. =¢ )/’ - -y x . .
more general Fz r? \79:- X/ S n=2: F==<x=+5z, x:‘+5z> curl F=8
2-n
wWhat iS Qx-Py for this in geneval? Qx -Py= "
N <’<o 9> 2-n
20 Fflux: F= o, div F= Px+ @y =2 Pt Qy = r9
<x-s,e) N 3I-n (|)
20 Fflux: F= " = divF= ladt
=S r~ ]
div F:z0 when w=3 ]Fl:; = oA
-> - '—
kN"-'v F <0 uhen [Fl= 3
. Greens Thwm
(si8l257 - l1ecture 3;-(':“"”"""" orienrabons via RWR
‘ Stokes +hm
(20)
region R, 9Rz=C, closed, or;ented CCw

ovtline ofF proof of greew's tum:
-
F(x-9) =4P. @Y is continuously diffrentiable on R 2 C
then fﬁ'd'-"= I(turl -F.) dA 20 corl Qx- P:,

R

TWO - STEP PROOF:
for crectangles ¢

1) Show dlirecHly Greew'S Thw holds
\

cancenaron
C N
A T [

2) beavhful
e
4
) = kcavu:el'.
ﬁ L 4 N

.r + I‘ Fde

> Ce C2

- [ = d.\

A2l the intervorn paths = CF- -

and we gef

cancel,
an exterior path

‘approximatre R wl rectangles
-circulation Blong shared (mterior)

- edges cancel
1ef¢ s beundawg

cwhat's

Simply  connectred.

), if C is any simple loocpe arouvnd (0,0), oriented CLw, +hen fﬁ-dv‘-' =2~

2s boundzmg of E)

2pplies +o (R, F)



moreover, F +here’s 3 thole

QR-'-C:'C;

CCw CW

in R, from rectangle approx., interier S CW orented

SURFACES W/ BouvmoARY:

Ex: cylinder, &

boundary S s made up of crircies Cc 8 Ca2
F:n’te, open

let's Say C. oriented 235 showwn.

Q +op & 2w orientaron on 2 boundary cumrve induces 2n orrenkation on +he surface,
portem Cz2 vice wversa. &via RHR
given

Ci's orientaton, prck 3 p+ on S wnear C,

corl Yyour F.'nsers
follow C,, theéen whichever way Haomb

is peintkng s
in Hi's examele, Humb pointS inko cylinden,

(en wright havel) so +hat they
induceol orrentabhonn on S,

so S oerrented nwards

O pick Pt on S near (2, Fingers Ffollow C,. Whicheve  way

U Hwumb poinksS inwavd, So F-‘nser‘s curl 2long C2 2SS Shown lhomb pFS 8 {aduclel oriewniatien

u on S, +thumb pFrs int> cyl , sO
C2

S or:iented ¢a!

Ex 2: Hemisphere x2+y? 4+ 22z
N oriented in

"" Pt wnear equator, thumb pts out,
&

Gngers curl, induced orientakon 23S

, @ 20, oriented mwards

STokES THM: (30 version of Green's)
with bovanoclary

-3
S a2 sorface Pwith 2V orrentabou, 98 = corvel(s) with cComepatible orrentrafron, F=(r.a,R>

then @ B.d® = [l B). dE
13 [3

3, L . .
reminders: Ccorl F = O x F =

e
?
2| = (Ry-Qa, Pa-Rx, Qu-Py)

LIR-{L
p Qo
»

green's thm. 2as special case of Stokes: f S (s

-
oriented vp, ©n=Co.0.1)

contained in xy-plane, Fz(P. Q,0)
torl F- & = Qu -Py

(se S=pr)

§£-d: =£(Qu—Ps)JA

Ex: ?(X,,,%) = (x2-9. x-42, x2.42+5:2)

Sz part of sSurfFace 2 >y whese suadow

NS

—

fn xy-plane s ciccie of rad =3,



Lsn2i12s)-rec
GCENERALIRED STOKES THM: fw
aRrR

20 F= (F., Fq)

_rdu
R

30 F= (F.. Fa, F3)

Fundamental
theorem ofF Ifne
integrals f"uv;r.. 2 var)

f)-Flay = [o 9F -7

Adim R =1

"t

b

Fundamental
$heorem of Iine
integrals (F:Fpunc 3 vars)

ClL)- Fla)= Seof A&

green's thw
$7. a7 = feom (P aa
R R’

dim R=2

Stoke’s thm: if R is oriented on surface in 3p w! oriented boundary R,

Hhen § Foadd= (3 $)a§
3R R

2F2  oF
corl (f)s T— - L
( 9 2y
divergence Ham: iF R ¢S a 3D regron 8 2R iS oriented outwards,
Aimm R:S
X $7.ur= (s 8yav

STOKES THM: wwa+ does

a

it mean Ffor 2 surface S 8 boundary
‘Right hand roule”

2S to have compatible orrenitations ?

2
% -@ RHR: thumb (n 2 die.
\
plane fingers: Ccw
oriented inward
/-‘s e Mal-ch-‘ns orientation of beundar_&,
/CW
-~
& 5> Wwe're choosing outwards
Ex Cad
L orient out, CW
cew
MORALE: point thumb in direction Hhe suvrface s oriewnted

curl Eingevs +o ‘nelicadte

current ocirection +he boundary swheulid be oriented in

Ex: 1e+ S = upper half of Spnere radius=2 oriented uvpwards
let G = {x,0.2%. calculate +he Flux of G Harough S.
e as
S
= - - -

hint: Show G=9OxF fFon F=(Oo,x2, 0) —x

T3 % 20  9xz ~ [ 2x2 _ (o
check: IxF=det | s 3 » ="‘(3_3-—32 -.T(D)'Pk S ° = 2

L1y 29y 2

o x2 O

- - -‘s"ches -3 /-—S
trying *o calcuizte 2. a8 = [((§xF)-d5 = F.d@
s s S

dS=<-circle x2+y?-4 (2:-0)
\\

{o,x2, ©)

but on 39S we have 2 =0
Se in Fact+ F=o
Soe §F.df =0

s



cfund. ¥hm of calc.
. differential Forms

. ¢ tokes
(s/121257 - lecture 35 / generalized s

FOUNOAMEANTAL THMS of CaAacc:

b
06: [ £'txrdxz £l0)-F(a)
[y

a e
N 2F oF -
LUnE nT: [ 8642 = F(8)-FlA)  or [ Jrdx+ Fgdy = F(8)-F(A)
(3 [
¢ region
GREEN'S THM: (20) rcurlF da = 5 F.d# or I{Gn Py ) dhxd y = ; Pd*" Gds
'3 ssufface IR 2 form IR ] Form
., C=93S
ng - . R _2Q 2p _ 3R %@ _2°f
SToke's THm: (20) [ (coet ?).dS = $ Fd3 or [(?a_ 7 ) dude + (az aw)dz‘*" * { 9% 2y )d"d’
o-.'em-s:lu s a5 ; o Rda
ouviwa S @Pdx + Q 9+
&2
DIVERGENCE THM: r(a.vr)av- £F 48 or f( 5. '53 d at)d“‘sd? = f Pdyda + Qolxdz + R“l""‘i
Space region T, 2 T 2 forem ’ 2 form W

2T=8

DIFFRENTIAL FoRMS: “things we can integrate’’
O-Form: Funchion Flx:y) or F(x.9. 2)

1-Form: F(x)Ax or Pdx + Qdy + Rdz
2- Fform: E(x.y)dxoy orn Pdyda + Qdadx + Rdrdy
3-Form: Flx.y 2ddrolyecla

RULES 2b. ol'Ffecent’al Forms: ASIOE. S3y Xz rcosd, y: rsnd

- (yY-x) 29 99 N - ox
l) dﬂdk --dkds PYER) = :: :2 - l‘o ;|=-| ds‘g D"-‘."d5=~(o‘§xd:) = dx= ardi‘"aede
=odxdx = -obtc‘.y o 3—3 ol = t=osOdv - rsin@de
0‘5: 8$mO dv +1rcos® JdO
D dxdxzo
then Judn = (usedv- ~rs'nb JO)
of of SinBdr + r oSO A6 )
2) flx.y, 2): dfz pxdx+ 54yt aa 2 ae d: $0 forms3 > §1 Forms 3 (
) ece of = (blah)dror + ros2@dodr
3) d(dkx)=0 +aking 2 +ny pré€ce of 2
tiny piece = rgnore! +(blzh,)ABdO
) = rcos?20 drdb + rsin?dvde
= fq) = df s € duct role
Y) d((-'«l-g) = AFf +d5 R d( 5) Fds + 9 (som of prodw ) Aol = red®

(extended) dlw+x)=z dw +de, d(wx)= wds + cduw

if  w= Pdx+ Qdy (neo dz's) ,
then dw = A(Pdx) + ledg)

z Padx + dPdx + Qagty + dQdly

20 ae Q 20
(a_x“‘"* Eds)d"*(a" dx+ 5y oy )ely

ae )
ﬁdjdk + %dkdg

- 9P 2@ 2Q _ 9r
;a—.;clkdg + ;dkdg = ( ~ ac_,)‘*"dﬂ

now Green's Says: fF W= Pdx + Qoly S A-Form in 20 space, 8 F R is 20 region w/ boundary 2R,

then -rdw s fw~. Porwm
R aRr
207 2 Lio
form



if ws= Pdydz + Qdade + Rdxdy
= d(Pdydz) +d(Bdadx) + d(Rasdy)

+twen dw
= de\sdz + AQ@d2alx + dRAxdly
- [ 2 2Q ar o 2R
- (9?;0‘*"' :—:d‘a* :—:dz)dsdz +(§%dw+ 5—8::'5-' -,—zdz)olzdx-r ( Pxdet Scy + 2oz ) dwdy
R
= BLandyde + Rodudads + 33 dadxdy
= +dxdyol? s4dwdyd 2

A4

s . 2a _ 2R
s (?E" 25 % 32 ) drduda

in 3D space.

then DOiv Thm says: 2 form w
20 boundaf:’ °T

3p regiea T wli

men o =S w generalized Stoke's Thwm
v / °oT Plug in pts
‘o-inteqral

‘ move ’Hn@ A&
changl Font’ Q—Fd oF ot |8 FI

[ 8rax- 54y + Jada=Fla = flac
(4

FLUNDODAMENTAL THM OF LINEF INTS @
S —
(-] Af
A '\/. o R =C.-C2
C2

Io\F: | f
< oC



