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2i32n:
[u 2

A=l13 12-2a-2 - a2:
y-x 2 A2 _2a¢10z0

de‘l'l AI =o (2-5)(r-2)=0
roots:
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calculatre Fflux up Harough S,
= {2x+3, 3y+2, 4a+l)
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-2 xz



