‘Pset partners
‘PSet checker

"H8 hr grace - ook off
"lowest pset drop

alz/2s 1) VECTORS

Rr* & plane in 20 R® 20 <. - Rr"
2z
® )\'5

(| )(—l in %

2/ 2 in C)

WE CAN...

scalare vect.

1) Scalar mulkiply o ¥ 4
3
ex: 3(3) = (6) stretch by scalar of 3

=

2) a2dd vectors

ex: (.;-) + (-:) = (T)

[3 perspech'ves]

‘2bstract "
I: ordered st of H's 2: 2rrows Show dir. + mag. 3) objects we
“a|3ebraic perspective’ 3eome+m’c /phss.'cs add/multt
ex: polynom, in One)
1?6 vVar on real line
2) LINEAR Comaos: o
21l linear combos of 2 veek. & 8 ¥
$ad+b¥la,beR3 = span§d. 33 Aa.-» o> ¢8 For AFF. c's

au red1 #
typical q's:
It what (S e span?

2: given & in Span, how +o choose a,b to ge+ i+2

3) SeanN /EciminAaTION

c
Ex- spani(!)‘;).?:fk‘ how +0 gqetr a,b for vector (ol) 4

Solve a(:) + b(;) s (:l) (f--’nd a,b)
:: :bb) g (:) ~c::§t==:! oa+2d-2cz¢c v az3c-2d
bsd-c

()@= e



Xspan mignt not+ be R?...

@ could be the orign

9 could be 2 ine

ex: span () (3)3 - $(2)| aer3
.(3)
)

('o) no¥ in Span

al)+ b(3)= (5) has wo solm.
(30)

e §(3)(2)(3)5  seamcR’
(3)=x(2) vs(3) 2 (3)
@ EX: Spaw g(':‘), (-ﬂ,@'z)é X+yt+z2 = O

#if 211 3 vect. in 2 plane Hivough origin, implies

is plane in r3

linear Combos 3ilso #were

1]
norma\l veéctors S (:)

4) LeNneTH + Dor ProoucT

Ié,_(S) pPythag = "(S)"z x4 y2
. N = [eregzr 37°

" =

TATRE e B
wa )l = % +X324... X" = & %;

i€ NR=1, @ = unt vectonr

”(g)“z+ 2?2 - x24yq?+ 22

OoT PROOULLT:

(x)( ) Z xiy;

("all‘:a-&')

v
R.T= RN NN cos® where B=2ngle bl+ é...
troe in IR? & jrve in R”

lcosOl 1 = 12.9) SURNINTN ineq.

™
cosz=0 2,V L when &.¥=0
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(2+3). (2+3)
a2 +22.24+ 9.V
Han? « 2a-9 + e

HA N2 « 2120 NUSTL + )NTI2
(udn+ncn)?

TRIAN GLE INE@: [|[X+311 IR0+ N121)

vectors: 2dd D+V

Scalar muld. cdX

. -
linear Combos: OV, + AaTh + Q3 Vs

LINEAR INDEPENOCENCE / DEPENDENCE:

-l
?ﬂ‘....-.v-ci lineariy dependent f (2a+¢ least) one is 2 lknear ctombo of ohners

opposite: linear dependent

RIS T

ex: R3 LA W ') INDEPENDENT!
° © : cant weite 3re or 2nd in terms of others

- a—
Vi, o U% 3 independent if anytime o.Y, + QyTz +... + Ay =0,

we wmust have &, &2,..., 4 =0

not independent - wmake ai’s give O with Some a;+0
- 3;, = - ‘E& (a;laj)\-l‘:

OV, + 0,3V, +agV3=0 8 a.#0

av. = -azVz -0,V > V. = - (®2/a.) @ - (*31a.) U

MATRICES:
2 ¢ .

Az |3 2 2rray of #S in rouws + Cols
Y ! —4Yihvow
2nd col

Aij = entry in ith row, jth column

MmMxn Matrix WN2asS M rows + N cols



[ 3
Column vector in IR > Kx | wmatrix

ca2n think ©of wmaterikx 2SS Collect’on ©of n col. vectors
H rRM
' S
21l e
a (()(n
4/\ s
TOENTITY MATRix: do nothing
" 6 ©
t0 o
Iz:(.c ) Iz=(°‘°7), e, In =
OracomAL MATRIX:
1 © ©
(., a .,)
oo 9
TRIANGULAR MATRIX:
12 ) 10 ©
(- 2 T | I §g.0
O O ] ' .
veper A lower a
RAaNnK
-t 1+ o ©
As (° B ?) Column rank(A) = # linearly independent cols
© o -

T *t°r
3x4 “H col vectsS
Working Ffrom lef+:

%(.é)_? is lin. ind. blc a(-gl)=3 onty f a=z0O
= rank(A) 21

%(.:l), (ﬁ); 2also ind. (leok @ 2wnd ev\-l-r-‘es)
= rank(A) 22

%(E) (ﬁ)(:)g 2i1so ind (look @ 2nd & 3rd enirres)

= rank(A) 23
- ca,+az o
solve a,¥ +a,_vz.+q3v‘3 = (— a,e:-:s) =3

Az3=0 D az230=>a,0 vecks.
)

k dont have 4o check UYth col. ble R (3x4) hignest rane is 3

2(-:'),(-;' ),( -o'c) (?)g not ind

nore: (3)+(2)+(5)+(3) =8

c(AY
CoLumAy SpeAcCE:

x
@ Ex: C(A)= RS (g)-’-*\?-"dl""c*‘?z\'!'i
C(A) rmapping givew by A Via wmuliiplicakion

span of column veéctrors

range (or u‘mase) of
oW + b + CT3 + ATy

linear combe



-t 1 © o G -+ b
Ex: © -t 1 o b = ~b+c ~ eniries a2re det products of
O o -1 . c
ol

-c + d fOw veCS withh (‘:)
c
ol
molé. b5 A 'S 2 wviap From MR 4o ng

RANK =] wm2trices 2any 2 colowmn VeCH+ors = I:wearlj dependent
' 3 4

Ex: (2 e 8
<»2

mult:ples of (;.)
row vank =1 alse 213 4\ = (2 6 ¢)
a co b
(b c,q,) (b cb) = (o ca)

a. ba, ca. do. vouws are mutis. of (1 b cd)
(“z ba, )

Caz da, _ (:-
a3 baz cay daz /) ~ a;)(' b(‘

ol
Ix Y 3xl x4 @

q/8/2s: WMxnn ma4trix A ( \2"'\ rows XelR" > A#e]’km

Ax

. 2 waus:

row,(A). %
- _ H D=
2) Ax= (fow..'.m\.;: b) AR 2 %01, (A) +...+ Xu Coln(A)

S ®
e (LD(Z) a | ) '

2x, + Yxa b) x.(z)* Xz(i)

ALcegra o AR

A () = c A(R) 5
A s inear m2ap

A(R+4)= AR+ A3 J A(ckedd) = AlcR) + A(JT)

TcA(x)+ dALT)

MATRIX MuLTiPLICATION

A mxn AB is wmxp, is odefined by col;(AR) = Acol;(8)

X 4 & : : i
VAN S B EO )

AL6GEBRA RuLES:
¢-;C3|af‘
2) A(c8) = c(AB)
maxn nxp
b) A(B+c)Y= AB+AC
mxn NXP_Pxq

¢y Alec) = (ag)c

(d-’sbr-' bul--'ve\

(2ssociat:ve)

da) Commout ativity doesn't always hold, even for Square wmatrices
(for muliiplication)

ex: (ve)(3 4

(33)(.

-Ww
N':

not the same

(1]
—_— S

&N
w -

S
)«



Ex: (ZL (: L) = (: :) ‘squaring”
I =A
Ex: Iz=('°°|3 Iz(’:;):(;) for A 2x2 Azrp; =A

3 w24S +o think 2b. AR:

1) (AR):; = row;(A)- col;(B)

2) colj(AB):= Acol;(8)

3) row;(A8)= row;(A) B
Ixn nx P

w\xv\& Mxr _vrixn

'3

¥
Factor A=CR r=rank(A)

32) rank =1, r=1 Ffirs+

\E, bad, oo, b.l‘)
A=(b;°' "§°" : ..“ 3l cols. in same direction 2s

Aza(b., ..., ba)s= (?')(b.,...,bn\

N

o vow vect.
col.
vecs. Ixn
maxt R
c
2b) vank=z=er >\
E., .., Cw linearly incdlependent cols. of A
+wese Coeffs
- L. 1 ad
C= (a. ¢z, ---.c") e R & Mmxnr / give col\;(R)
- -
every col. of A Oj = linear (ombo of C.,.

.-, Cvr
(l -2 z)
Az lo2 1 gy rank(AY=2

I1st 2 cols. are independent

' o
c:=(o z) Clinearly ind. cols (couvid’'ve chosen any 2 cols, then R is vnique)

write cols of A 258 linear combeo of C:

colz(AY= (V)= (8)+£(2)
coluy(A)= (3«)= 2(s)+2(2)
wrte R:

[} o 1 2
R = (° ' 2 =2 é col.(AY=1-Col, () + O-colz(C)

top= what ygou wawk from st col o . get resolt valve in A
bot = uwWat you want from 2wd co|

(‘o)(| o 1 2 _ 1 (-] [] 2
o 2 © ¢t fa 2| = o 2 1 L]
2x2 2 x4

# choice of C is NoT ounique!

Butr R s unique conditional on C

NOTE: R conitzains T2 vrank(R)Y2Zr

ReER™™ 3 rank(R) ¢ r - \’

s rank(R)=w

R is reduced row echelonn form of A



% every column of A iS combination of cois. of C, C was col. rank = v

every row of A iS combinakon of rows R, R Was vrow rank:z=nr

SGuare linear SsSy4ys+ewm

. eqns in N unknowns
QuXe+ ... *+ OAvnXdXnn = b,
Qn.x.*.‘..-ﬁ QX = bn
define AeR™™ wit Aij= oj

X b
D= (X:v\). b= b“) A% =B is solvable iff bec(A)

a/10/2s: Mmxn mairix IS Squavre if m=cown

rank(A)= # iin. (nd. cols
# lin. ind. rows Drank(ay < M;ném' “g

AR is 1inear combo of cols. of A

AR = x.col, (A) + ... + XnColn (A)

Ay X, ...+ A ¥n 2 b, A;:t A;tj :Q.’j
: :' = e (5 ee(%

O X * - 4+ QunnXn=bnuy X = *n s bn

-
Soluveable & beC(A)

@ SQUARE LinEAR SysTEMS:

thm: if rank(A)=wn, then +here exiSts 2 unique AeR™" solution % +o AR =b

Nnxvi vmatecx

-
for every b
two clims:
2) there is 2 solutiown
. - -
(A; b) has rank=wn = b wnot+ indep. from Ist n cols beéE C(A)

b) {here S owniy one Solwn.

2Ssume therve's 2 soins A¥=b 2 AZ=-h.

twen A(X-3) = A%-A8:=B-b=0
lemma: iF A is nixwn, rank=wn, And A't"=5, fwen Z=0O
lemma = §-§=3é§=§
Why lemma?  z,col, (A)+... +Z,colnl(AV=0
what happens £ vank(A)<n?

-

erther (a) ne seolas b ¢ c(A)

(b) ©° Soins B € CIA) with o ways +o werite

lineav indep. cols = 2, +... +2 L=O



GeomeTRry 1~ [R2: Xa

QX+ Qi1aXa = b, €1 unique Soiwn

X,
Az X.+Q32X,=b, /|

(a..) c\,z)
2 tines in R* (a2/la;,

Back SvasTiTuoTioONn (upper 4 System)

X+ 2y=1| x+y +2 =1
Y= \_/’S+ZE=7
€asy by 229

Working v

Vo
12 ©o 1 2
maFrces (o W, (o ° .) & vppevr As

Ex:| X+y+2=]

L) 1 1]
= ° < 7]
:-zq ] ne seims (c : :;.)/P"V""S 3 2ny +ime 2 pivo+ =0, Smihg. has gone wrong

ELIMINATION : changing Square System fo veper a4 owne
z**:s TU 5 —2(1s) + (2nd)

2x+34y =0
-2x -2y4yT -2
2% +33 =0
4=-2
X+4= |)
Ex: A= (|z‘3 , E‘:(;) i (:, l.), (~;.) is +here a matrex E +hat does +hat
1 ° . (svbrr2ct 2xvrow, from vowa
e (8)= (-z) ., E(?)= (S ) , E (x;) = x,col, (E) +Xxzcolz(E) S Store inte rows)
E=(-'z? Ag:=b - (EA)® zED

tUPPEv‘ A

WRITING TRANSFORMATIONS AS MATRICES:
* (3)-(%)
—T o Al =(d) A=(s =

' ALT)=(5)

a

29
Yy=x x
7 (3)"’(1)
L Aale)=(7) a=(7 o
ALT) = (5)
3 0
’\ ! °o -1
A= L. o

X
> >
— 7~
-0 o
—~— —
" 0
—_
-0
S

1
~—



aliz

# ind cols

e rank(A) = 4 ind rows

review: for AefR .
Cov every G

rank(AY=n = ClAY= R 2nd A=b thas uwnique solwn
col. pic: AR = X, col.(A) +... + xuceln (A)
ELIMINATION (make matrix upper &)
two operations: (1) Subtract moltiple of row; From vou;

(2) swap +two vrows

(3 \ o) E2. (3 \ o) E a2, (3 ‘z ?)E;z (3 \ o) )

-3 ' — |o 2 | - |° — o 2 | =

A= 2 bd-:l ‘ e 8 4 :ub. z:, o & 4 /) Rizr.lp o 1 VU (veper a
' Laf .

+o vr2 om =3 \zl\ diagownals ¥o,

2\l _changes vid matrix muliiplication nene wmoultiples

rank= 231!
wWwhat m2airix Eai 2dds row, *+o rowa?
' \ o\ _ o Sy _|[o
ea (8):= (), (2)=(2). (3):=(2)
(! e
E2,° 00‘:)
1 O ©
Ez, = (?1:, ?) Ei2E3,E; A= U
{ © ©
en: (353)
INVERSE MATRIX (if it exists)
A s inveriible if +neve S a ‘inverse mA+rexn Al S0 +that AAT'=TI= A'A
noe+e: not+ 2\ A's naave 2w A

& de+(AY # O
&S AemR*

(=1 (A'>?=6=)$<‘=6)

WHEN 00€Ees A™' exisT? rankl(A)=n

(col. space)

A.B invertible = so is (AR) awnd (ARY'=8"'A"'

8'(A*A)B = B"'T@8 = 8™'@ = I
A=Lun FACTORIZATIOA —C2n Solve many AX=b after Cinding U

Ssubtract R (-“ e :)
.

Ea, = frem R’ © o
1 © o
1 =@ 1 o
ESI"(zo 1)

I © o
- - o | o
ESz"‘(og n)
L

m
N

n"
—
-0--
~00-0
-00
N

-1
E32E3,E2,A=U = E3,"' Ezz E3E2,A= E327'L

moult. by E3': E2 A= E3l E3z U

1 © o T © -] I © O

mulk. by Eil i AZE2Eff €33 U enen-(20 3)(5% 9)" (333)
- - - To © \ o9 \© o &~ lower A

AzZLU, wwere L=Ea' EilEs3 e Ed €53 = [ ‘o?)(;; ?) - ('z'_'s ‘7)

(have Is on diag.)



@ Cost of EciminaTiOA:

hWow wmany muliiplica+’'ons + Subtractions needed +o make nxn mairix veper

Yo eltiminre 2,1
o

\s+ col:

(l‘o‘-g. (@)
) ro...'...LA\)

2nd col: (n-2) entries

H# +otral multipliications

alis: for A € I'R“*“

V) row operaiion

(n-1) enteies

entry

+o remove,

, rank(A)l=wn 3

+o re move,

N
~~

n

muldr, VM svbe

(n-1)n + (n=-2)(n-1) +...

A™' exists

—) vpper A& W

2) row exchange

rfow
Y ]
‘cost '’

L3
of LA+~ 3\

better 1o solve A¥=b i

PA = Lw
pzrh'al)

pivoring matiabs [jutia:s

P:{-kov\:
TrAnSPosE: AT=A

*reflect”

1 2
34

2Cross

EX:

I D I &

reduction just wmatrix
L
wmolt, 3N

standavd for folving A2 =D
TN

I-‘nals. solve ()

diagonal:

HEN

2

mo lt.

3 sov bt

Lu than A

\ LA PACK

—

2 SeeciaL TyPeEs ©F MATRICES:

Symmedtroe: AT = A

skew-Symmeiric:

note: (ARYT =BTAT

(ABY:5 = Z Aix B —

Kz

(8TAT) =

L]

AT=-A

(72)

(5 s)

([AB]T )-'j = (A B)J.'

wn
W
= BI'KAKJ' — Kzz‘ Bki AJK

eachh v wmults,

& AA”!

a?

N Sub¢t.

each (n=1) mult, (n-1) Subt.

+ 1(2)

=TI SATA eumination hwas 2 steps:

Computatie v\allj

w
= KZ_.AJ'K Bei:

same!



TRANSPOSE + Dot ProoucT:

9
" I1xwn (g')nxl
;(‘,gérk ;-'cg:?t‘.rg: (%¢,:0 0 ) \ 4
| F—
nxi

2. (Ag)=%xTAg , (A%)'g=RTATE = %.(aT3)

*only square matrices have iwnverse

INVERSES: for Aél’R“*“, ‘he Follow:ns are equivaleut:

N vank(A)=wn \‘

2) AX:=b sSclveable for any 3 ve kwnow Hnese
zmead:,

3) A%:=-0 = =3 5

4) twere exists 8 s.t. AB=T -‘ new

SY +here exists C S.k- CA=X /

cclaim 1t (8) o ()= (2)+ (3))
we have C se. CA=T
if A%:=8_ +thew CAX =CS = £=8 v
cclaim 2: (u) 3 (0 = (2)=(2))
have B s.t. AB=T
Por any b, A(BE) = (ABYL =L 2 8E socln.

et2im 3 (Y =(2y=(3)) y
T

Lé‘,"", €‘n) Solve A';,=€,,"'. Ag‘v\:e—‘v\
B=(9,.... 3n) > Aas-=1
Claim 4: (Y =(2)=(3)) = s
rows & ewols swap)
need C s.&. CA=T = (ca)T = ATCT (rawvk=w — s+l

when +eanspose
Same as claim 3!

™"Movre Properties...

- if A8=CA=T, +hen B=C

T I
8=(cAYB = Cc(Ag)=C

- if AB has 2w inverse, So ddo A B B, and (ABY™' = B'A" (A2 B8 = savare)
A" sSkould be B(AB)': AB(Ag) ! = I
8™ steuidd be A (BAY': (ARY'AR = T

B'At = (A8 'ag(AB) ' = (AR)"
ko

(fetl rank)
it A8 B 2are square, awnd AB have rank n,

thewn A & g have vank ul



PERMUTATION

EX: | how wany pEermS of 1,2,3?
w2, 3 2,1,3 31,2
Lz 2. Za.
Permutations of w elements: wn! = vn(n-t)(n-2) ... 2.1
PermuTAaTions MaTeix: ey
X =2 (2 o ?) ey
P(’:‘;): x'.‘ , P= T o © - eT PI=P
Simplest permutation: vrow exchange (Swap 2 rows, rest stay in place)
THM: every permusation can be built out of exchanges
Ex: | 1, 8§, 3,2,4:
1,2,3 4y, 8§ — 1,5,3, 4,2 — |,5.3, 2,4
26§ 4o s
alnr PROOF by INvoOUCTION on

ws # element+s (permoutation wazatrcces)

true for wnz2: 1,2 8& 2,1 (base case)

2SSume 21l permutations of leecty v C2vn be bu'lt from row exchanges
consider permutation of

v2,.:c., n, !

2 CASES: if (w+t) is 1a3s+, done!

iF (V\-N\ 'S no+ 12Ss4, mﬁ

12s+ wl 3n exchange

PrRoPERTIES of PermurTATion MATRICES

Y vank=mn (-‘v\ver-h‘ble\

2) pT 2SO0 permutraton Mmatrix

3) vows of P ace L +o each other (cols teoo)

4) PiP2 s alse 2 permutration

§) P'= PT if cows are 1, PPT = T &caned orthogonal matrrix (Sakisfies property)
S =
( )(3.’...,3:)

w

o

PA=zLU FACT

A rank n = Ccawn reorder rows S.t. 3ll pivotS are nown-zero during Elimination
PA=LU wwere P= permutdtion matrix

Fhat pubs rows of A in "r:skl-" orodler

PERMUTATIONS ©oN 3 ELEMEANTS

SwapPist 2 swaplast 2

Ex: 2.3, ,2,352,1,3 > 2,3, 1 kcareful! Py 2tieniion
\ o o o o o1 ® 4o directionn OF multiplicad +iown
P23, = Py Ppyy = (:? ;)('eoo?)=(? e ;)

w

end of exam
A content




TAYLOR APPROXIMATION

say £(w) = O(gm)) if |FlmLs Cq(w) for h sSmal constant C

Flxen) = FOd+ WEGY+ Th2e"(5), §e[x.x+1]
—
Olw?)
Llx+Y= F) + W Flx) + Sh2 e (x) + é"‘a‘:(”“) » 3elx 4]
—
O(w3)

FiniTe DirFrerENCES

kvwow £ @ many points,
Flx+h) = £ (x)

how 4o @aperox. £' and £ ?

£rix) @ = forward O(L) Elx+n) = Flx)s h F'(x) + 2 h2F"(x) + OC3)
= m;;—m-m backward O (W) - £lx-b) = F(x) - WE'(x) + TW2E"(x) + O(L3)
_ _ | I

o _F(x*-h;_uc“ =) centered O(W2) F(x+W)Y=F(x-h) T 2hE(x) + O(L3)

P:nolins €' (x): don't cawncel bic

Ex+RY = £lx) s lh €70 + 3 hZ2E"(x) + Th3F"(x) + O(13)

4 Blx-W) = F(x) - WE'(x) + 3 W2E" (x) - (,I_"‘BF"'(") + O(wn?)

S(x+WY + £ (x-lh) = 2F(x) + LW2E"(x) + O(L3)
Flsc+h) -2FCx) + F(x-L)

£'0%) =

= + O(L) & 2cecuratre o ~h2
A/22: £'(%) 2 ‘—(Hk)\:“ﬂ forward diFF. For F' (2ccurate +o wb)
-2F Flxe=-t
() o Elxend zka.“)‘ adnkel centered OlifF. For € (accurate +o wh?)
FiniTE DirrFERENCE MATRICES
have wu(x) for xelo.17]
discretize: look Q@ u(j/N"")
© to N !
define Sowme vecter ZEeMRM*? nece Bj:= w (I/na+1)
N+ .. NN+
G’.:ulo). aN..,:U\“),‘":'/N'fI i & T T | E
-
. - Ry - &5
ForwARG Oirr: ‘derivative” of 2 is FeR™ witn F = PN OteN

-
-
AR=F e n+1 ten vecror

2 As
(N4 x(ne2) V*2

-1t

-I'

RN ° /\a"'“'
(0 tele ) e.vmocl-'v\sp_f

[}
]
Solns. 4o AS =8 are ©&= c(.) “what Function's derivatives

rank (A) = N+|

(-l " © o
. o -i o
Ex: | 3%x4 |\ oo ' ¢ )(

JdifF€.

H#s

cancelling out £'(x)

o2"

n



W' (%)= F(x) For xe(o0.1)

Znd Deriv: u(o)yz 0, «u(1yz 0
)
Se+ E: F(ﬁi-.-zaj+ﬁ_;+,) for jz1,2,..., N
: F (Irner) 2nd set Roz0, Chmaes = O
2-L o ~N
= ?:-ﬁka, whwere K= (ol _:;;:)GIRN‘
“
2= (1)
Ex: | sowve wu”(x)= -1, xé&(o.1)
3 (1-)
wlezulnzo = uins 2

Solve this, get & plot U = Solving lIin€3r Sein. Gives us basically exacf,

ercor S «— 10°'@ 5 comes from +a:5!ov- seriesS. formoulia (s exac|
Ex: W' (x) = -2rxSin (2r =)

neY=u (1Y = O ¥Solve using LU Factorization

lin. 213. goed way +o soive d:fF eqs.

ABSTRACLT VEcToR Sepace set V of vectors... *wo operatrions:

(1) vec+or 2odition

l2) Scalar muléipiredtion

8 RuLes:

[b) Commutivity X+

xp

«i
n
(U~3
+

2) associativid
Aveliawn ! 3

qrave 3) S exists

Wnow vectrors
interact wi 6) (ab)xX= a(bx)
Scalvars

7) a(%+3)z aX + oY

8) (a+bixza® + bR

Exs of 3bstract vecteor space

.vecrors in R

@ + 21 wxn matriceS > A, 8 €V, A+BeV (mairices themselves caw Form vector space)

s polgnomials on R = x4 (%x2-3) = x24x -3 (Starkng 4o look lke vector seace)

ExS | of NOAI - 2bstract veckor spaces:
©-.-:0
e NxN invertible wmatrices -» (0-0) is NOT inveri ble & no+t a2 vector sSpace

21s0, adoling 2 invertible (Full rank) matrices does NOT quarantee Full rank

nulkiplication does NOT exist bl+ vectors



al2e

Ex:

Ex:

Ex:

Ex:

-0

Xy ¥ X2 + X3 + Xy
X, -X;

how many selns ? O
Xz +2%34 Xy =

Sueseaces:
set SecV is a subspace ifF:
2) V,3€eS = v+ReS
) V€S, a€R = aveS
= "
ine ﬂnfousl-. O in rR:
S: §83 is sobseace
$2>03cIR wot subspace

if S is 2 sSubspace, linear cowmbinadtions Stay in S,

Vv=c.o,+ +Cn&n
CLA) iS 21 1in. combs of cols of A=(&., ... &%) is suespace: &Sda+ ---+tduda
VO3 = (Cotol VB # .or ¢ (Cntdn)Bn
R(A) rowspace = all linear combos of rows of A KV = (KC VB 4 ... + (kCw) G
NutLseace: iS 2 sovbspace:
N(a)= 2%]A%=83 AS:z0 , AB=3 = A(P+2)=At+AR =B +8=3 D V+&€N(A
For mxn matrex A, A=k (A)sxB =& SV en(a)

»~ eqns in R"

two peerspectives:

AR = x.col, (A) + x2colz (AY+... + X coln[A)

NIA) is way +o make O out of cols of A

cols lin. indep = N(AY=EB3 & N(AY:- waus +to make B out of cols in A

row,(Ay« X )

Ax = (row:m(A\-it' vectors in NI(A) are orthogonal (L) +o 21l m rows in A

YT FunoboAmenTAL SougsePAce:

N (AT) = vectors 1 4o al columns of A

+" o 3 §
R = (o vou 6) note: R is in rref (reduced cow ecnelon fFovm)
Sl C—

indep. cols. dependent
form I cols. called
‘free’” vars.

C(Rr) = MRz & tirst 2 cols of R ace indlee.

N(rY= ? RX =3 & x.+3x3+Sxu=0
X2 + Uxz + EXu= O

+wo special solns:

-3 -s
X3z, Xq=0O 9 X,=2-3, Xa2=-4 - -6
= ( ' ) ( o | & M(R)
X320, Xuy= |- X =-§, x25-6 o 7/, '



claim: N(R) = Span z§',, S, 2

D) they are independent

]
2) they are L +o rous of R N(R) R

R | 4xH

-

ST rank= Yy

—

ST R
s
s

- - -— :T
if existS S3eAN(R) with S3 & seamis..sai, then S57 would be rank § - NoT poss-ble.

how +o ‘see” special Solns:

-F R -F\
R:=(zaF) (8 sy = (:,) R(5.82)= (z2¢) |z
iqentitad 232 wi
dentity dt_eo'::.nd' = T (-F) + F- (I;) = o

from A +o ccref (A)Y USing Elimination
3 oPerations +o SIMmPIifYy 23 WABbrix:
2) Subtract muli. of 3 vrow From 2not+her Eij

b) row exchange P

new! —— ¢) wultiply 8 row by noniero constant é&diagonal wl m=l ones, 2a

A= EA=: Re Single consSt £0O that gives SCaling

‘Ln’v\verh'ble,
prod. of oes

theee operations +o Simpirfy  wmairix 4o veef:
2) subtract C-row; From row;
b) row exchange
c) mMoultpely row by wnon-2ero ConsSizni
eacw operation inveriiple: A—> EA-= Ro
] -] 3 <
(o ] 4 6 )

— —
inclep. dered.
cols. Cols

‘free varsv 5 special Soins,

from A 4o rref(A)Y with Climination:

Ro has Ffoliowing properires: ——
°lf: °
o) ISt r indep. cols of Re will be (0)(9) ()

(rank A)
b) 125+ m-r rows an 2ero
) femaining wW-v colis are all _free vaers
(n-r) of +uese = ge+ wn-r special Soins for AN(A)

note: NIAY= N(Re), ble Ro= EA
Mxn ™mxm
inv(r“h|e



XEN(A)D RoR =E(AR) =EB=&

¥eN(R)D AT =

(i ;
2 4
Ex: | As |3 o

for each free var xz,Xx3, etcC,

getr 2 special soln. by geriing
one © |, oéthers o O.
X2 =1, X3=0, s = 0O §

—

X2:0, X321, X520 Sa

-

SoLvinG Af: % (#heers)
mxn R R™

if m=n 2anwd A"

selveable & bec(a)

exists, X=A"B is unique Soln.

it FTEN(A) and Af:=b, +hen
ot SCalar

donty w2y +o Find exira Solns.

if % & X2 are solns, AR :=b & Af‘::g
=

A(R-T2)= AR -A = b-b =3 -2 eN(A)

:::;'v:b\e
-_ ¢
AX=b in practice: EA=Ro & rref(A)
AR-F S ead=cb
Ro:=Ec

Tl )3 o
Roz= " 0% " "/im-~ = Re% = Eb is solveable

& 125+ m-r rows of EB 2re Os
* once we have +h's Form,

easy +o +2I\ Soins

C(Rrs)= i'ﬁel’k"‘ l qf+,=...=§“=8§

2n obviouS Solm o Rz EL: set Free vars=0O, and

‘p2rtculae soln ip - vse +the 4op r ewntries

= general soin to AR=B iS Xe+ Xn, where XaenN(A),

note: oon‘t compute E explicitly, 2 pPply i+ +o B.

(everything m N(AY s in

N(Ro)

=E"(EAR)= ET(RoR):=E'S =8 «  and vice versa)

A(¥+2x3) = AR+ xAZ = b+3 =5

of Eb

(' 3 o 1) (: X Free
. _ e e v a - _
EX-A-.;,‘,,b- bza)
(- 3 o 2 I :- )E;-Q.- 3 o 2 l
= —5 [0 06 1 4
2vgmentred mairix (Alb)= ?: : 2 03 © 0 I u

] 3 [~} 2
Ro = (g S o :)_,.u\eed b3-ba-b SO For soln
bl
EC = (:;-bz-b-)
Par+icoular Solnm Xp = (’?)
1 3 0 2 :v t-
X2a=x4yz0O: (::3:)[’;’)"-(5;-5;-5.

E

b2-b.

=

)?.“= C-E‘. + C2 §.3 +... + Chn.r §.—\-r



130 2 b
) “
10/\: | |ast +ime... Complete soin. +o AR=B, A= {; 3 e), §=(t‘,)
130 2 :. {u;oa t- \ (u;oa :-
- o u 2 0o u b oot u 2
dug. Mmatrix (A1E):= {| T e b;)-' oot albi-u) P |00 ol bs-u,-ba
13 0 2 R ;5{ 7
(°° ' “)={.... Y X2,xy free
Ro= oo o o o’s

particular soin: need bz-bi-bs =0 (otherwise no soin)
"F"ef" 3 )
set xi‘.—kq:o = ;t.p’i :‘

- = -
Completre sotn: xp #CSi +C2S2

) ci,c26R

-
Special solns: X2 €free > S. =

—_——
0y 00-g
SN—-

L}
~~
-£

-
Xy free— S,

( 12 1+ o y ) ( 1 2 1 o I 2 0 -4 2
SY-. [2 4 4 8 2 2[00 o 2 ¢ I-e ) © o ! 4|-3
Ex: (A & ) = 4 8 & 8 lio ©c 0o 2 & l-6 = o o 0o o 1?
— Z > -.2 Ro E:
X2=0 Xe=1-3), X2 free: S.=| 9
o

’fq:O - ; - - -
Xy free 2= [ ctomplete soln: Xp + C:S, + C282

- -
STanOARD RASIS: ie....., Ba2 Ffor R"
o
g (2) o come
X
(5 ): X8 ... + KnCuh

xn

- -
cevery Xespantl ... 8n3
= 8ASIS

° only one way o do +hes

BAsis for vector space V:
list of vectors £%,%,...3 with
'spanz\_"-,\-';.---g= \'4
“ V. %.... are linearly independent
()& (b') eackh VeV has unique linear combo. of EV.,7s,..- %
T/‘=c.¢.+ CaVi + ...+ CuVe =P +laT; +... + ol Tk
=8= (c-d)P +.. .+ (Ce-dr) Ve
note: if i add/remove vector, no longer~ 2 basis!
remove owne = Span £ V

adol one — linear dependence
EverYy RAsis: for R has w vectors in it
W+l vect+ors > linear dependence (\7: Vo --- Vn \7:4-.\ rank e wn

Nnx(n-1) not in SPAN

?
n-1 vectors » span £ R (v...%.) > Ro-= ("'o';s"') © with Eb nown-zero
\ir\ row-



Dimension:
Fham: if F0. ..., V3 2nd Z2W..... Jn3 are basis for V, then

mMmz=wn. call +this # oim(V),

proof: if m>n, Vk = Ok im0 +... + Aknidn For Kzi,.... »n
e an
Az (o .o Oianm ), rank A<m 2 rows Jdepewndent .
mxwn Citro, (A)#... + Cmrowm(A)=D

with c:'s not 31t O.

e Te...+ CmTm=0 Z\'I:..--,V:ni lin. dep! O & if ms>n, would a1l =3 = lin. dep.

Porvmomiats oan R: is OO- dimensional: i'ox.x’,...g
polys of degree £ 3 on MR: F1.x x2 %33 is basis 3 dim=4

Subspace pl1)y =0, dim=3 Flx-0), (x-02, (x-0)33 is bas:s

EX: V in IRY Lith X.+xz2+x3z0 lookS Iike nollSpace, which (S 3 vector Space.
Xe+xz2 =0
" L]
V:N(A),A:(n- o)
L Ve LI 11 o
r.-e(::(.-o —?(oc-u)—’(oo\)"(ool)g"
- T
€ d: v=i
X2 free = §‘.= (‘o) ¥z Free ~
is 3 basis for V:-AN(A)

) SpanzVv

1013 feview: basis iS 1ist 3V, V2,...3 with: gn linear independence

"

U]

dim(Vv) = # er1ements in basis (inclependent of bas's choice)

basis frowm sy 20, ..., T3 of vectors in V (Fimite olim)

do € of “CR Fact” build some basis B going
a) (f it spans, can delere Some —» bas’s [eft to right. (F ¥, U B 2re Un. indep, add V; +to B

LY if v indee, cdn ado Soeme ——» basis  For B = ET,.... Tk T lin. imdlep. if spanB=V, done!
otherwise, exis+s NeV with Jdspant.

2dod & 1o 8, 2and B still 1in. indep.
repeat n-k +Hmes for V with dim(v)zwn,

FUNDAMEMTAL THmMm of Lin. AL
B= bas's

for sOome mxw wmatrix A, rank(A) =v
set of rows L +to A

dim ClAY=v dim N(A)z n-r

dim C(AT) = v Adim N(AT)= va=-v

tset of all cols L +to A

¥=-F7
*we 22iready know dim ClA)=v o
(:r..-:t-‘ ) (5)];ndep. -
R N -2 = ‘.
indep. cols of A are bascs for C(A) Ro* o’'s RoX =0, %= \2/]¢ree
- cols of RREF(A) wi pivots (:.- oy (F)_ ) (S’) . (FE) -3
Ro: rref (A) Ro= |'6s /8T (os)2 = | os os|~”

- -
N(AY=z N (Ro) special solns 25.,....S...3 basis For N(A)
% Choose any 2, we can pick 4 &

getr unique Vectow



NC(AY = N(RoD?
invertible

<
A>SRoz=EA (H—weush I'near l-ransFec-Mah'ov\s)

i€ XeN(A), Ro¥=g(A%)=0

ReN(Ro), AR=E'"(EAYS= E™'(ReR) = E'E =3

GRAPHS & INcioENCE MATRIX:

collection of nodes (vertices) & edges +that conwnect pairs

graph:
vV zveriices, Ezedges; graph ’s directed if edges have start + ewd
8uF gos
Flrshi-s: .\_/‘
)
® oca
e _Vee
v f l\q
CYcLic GrAPH 4 wedes: 3 2
on nwo e&':,;—}e,

INCiDENCE MATRIX: describeS graph
TREE:

- rows: edges v
cColumns : veritices "2 V. vy V3
Vi va V3 V4 . v - e f[-1 o
e/ -y [l o © -l e; leaves Vjy ..\’ )
2l o -t o +l e; goes +o V; o e2 (=) ‘
3
elo o -t O otherwrise
€u\ 1 [+ o -t
COMPLETE GRAPH: V. Va V32
, e, [-t + o
o a2 1 -t ©
¢ e S
(¥4 3 | ©
Vg 0 Cq s {1+ o =t
S~—1—" V3 e\ o

e
N(A): ge(g)l“"‘g 2lways if graph s cownwnecred
dim (n(a)) =1 = d(c(A)): n-y
nzvl, m= lEI d (AT )= w-y

d(NC(ATY )= m(n-1)

10/6 REVIEW: FTLA for wmxn A, vank (Alsy»

chivn (CCAN) = ohim (M(AY) =

Aim (CLATY) = r Aim (N(ATI) zm-v

OrRTHOGONALITY: L

Subspaces V & v ace 1L f V.-3:=0 for an Tev, Bew

v-§()s’ w237 s

B 3

orthogona! but x o
NoT +h
comp?gm:?\:s“ — v §(3 )g ws {(f ,? not L ¢ Some maght be, but not+ 31



CLAIM: if VLW and %€ VN, then R=3
R-X =0 IRN2=0>%=3

£or mxn mairix A, vrows of A L N(A)

= C(AT) L N(A)

pe: if vEC(AT), V= c.- ¥, +Ca-7‘,3 vee * Con¥rm , v; s row;(A)

for XeN(A), P;-R=0 for 20 izl, ..., m

TRz (PRt C2 (P . R) +... +Cm(Fn-R)=0 ©

FTLA p+ 2: Subspace V & W are orthogonal complements f

12rgest olim, Bvery L makrix iSs Subspace
4

V' is orthogonal complement of V., is largest svbspace L V.

every vector L +o Vv iS in W.

fact: For VAL W in MW, dimV+dim S wn

it AimV +dimW =n, VEtzw &8 wWit=y (ortheqg. comp.)

-
if ViW, uith {\7’,..., VPS bas's for V
I5.,.... 833 bas's for W

then E7,...,Vp, G\,..., T43 2ce lin. indep. vectors in R™

.

if ptqzwv 3 basis for MR"

pf: i€ V+n =0 ¢or some TeV, Sew

—
PPy
NV+RN2=0.04 P. 0+ @F. .3 3-3 = lIT0? + 302

SPan of rows
of A

FTLA part 2: C(AT)* =N(A) 2nd C(A)* = ANI(AT)

importan+t Fact: N(ATA) = N(A)
— —

nxw Mxwn

ATA2:=8 = XTaTA% =0 = llARNI*’=38 = AR:=3
(a%)T(AR)

ProTECTIOAS: Closest pt. on x-axis +o b

- -
ar-B
& 1802: proj. of B onto line +nhrough 3: 5=3(a‘.;‘\ )

ey

Proig




v foll rank R -
for AeR with rank(A)sn, how deo you project some RER™ onto C(A)?
proj
e
Ctaim: B= P wnere P=z AlATAYT'AT

Why is ATA invertible? N(ATA) = N(A) = 253

nxn
Why does i+ work?

need +o check (PR-%) .1 C(A)
S (P2-2).(AZ)=0 for 211 XeR™, yeR"

9TAT (p-2) = 3TAT (A (ATAY ' AT R -7 )
= g-.-A..-A(A-rA)-l Ar;; _srA-r;;
=3TATL-yTATR =0

0!8 LEAST SQUARES:
1) eqns. wio sowms
2) fitding line inte 3 pts
3) fivting in general
AR5  AeRP™ | Femr? Cer”
C(AT) N(A) C(A\*.. N(AT)
X S oo e R c
q % P
®R pfo.‘.ocj\ R
onde
cot-SPace

if BEC(A), then +there is a Soin.
b= Pb+e
e

Pe PB minimizes +he distance +o b on C(A)
YA eN(AY

QuEsTION:

*
x -
what s the best approximarion for 2 Soln 4o AR=b
- - - .
solve AX, =Pb instead. we kwow +here

iS & Soln. blc
L
€C(A)

PE & c(a)

CLAYM: ?.. solves ATA Ry = ATg
why? AXs = PB =b-8
enN(AT)
Ta= . g T(.
ATAR = ATE + AT (-B)

0 since &¢eN(AT)

FITTING LineE 1nTo 2 POINTS:

(-t.=v), (o0, 0),

(¢, 2)
% 9, X2 Y93

X3 93

What s line y=c+olx +that

Fits the dara (xi.9:):ef1.2.33
the best?

ACTUAL Sowtmn would be: c+dx:i =y
c+olx(-1)= -1

c+dx (0)= O

[ | -1
NOT ComSISTENT! (' °)(j) = ( o) A=b
c+dyw (1= 2 '



Cw
the best Xu = (d;) Solves B : ATARs =A"B
ATA = (. o ( z) & invertible! 2aimost 3lways
1 . 1] L]
ATb =(-| ° c)(:) = (3)
3cw = - cu ='3 \ 3
2ds = 3 2 dn=312 ;.best fitting line iS ys I * FTX

2
the solution (C‘,dﬂ) Mmincmmi2es ;;. (cedxi-y9:) over (c.d) € R

hence +he wame ‘least Squares approximation”

FIiTrinGe 1o GENERAL: x >
data points (e, b-’):gf_u,---.ma x *
bes+ line y=c+dx ¢.-Hm3 +he data?

C+oda:i=bi, m soew lines

o ({E)@-(])

A x t

BEST- FiTTInG Linse solves ATAXs = AT
! & Za; (tb:
ATA = (a. an\ (. u.-‘) Zn. Z‘a.-'-), ATp = Za:b.’)
l—a;v\verwble itf wmZal # (Za:)®
! Zail. Za;
(ATAY 'z mZan(Za: i)( Za: ™ )

. » (tb: \
Solution Xu is given by (A"'A) Za:bi

NOTE: muclk simpler if ZO0:i=0 -3 ‘centered data”

10l10: ORTHOGONAL VECTORS:

kronecker & = iy is Cijih entry of T

$U ..., Uk 3 orthonormal f V- G s gy fer au iy

Q- 2‘7'.,‘;.:, .. Ve 3 & R"*K

Q'@ 1w QO" # T uniess kzwn

(@ve) iy = Vi. rank(@or) = dim (C(OOT)) £ dam (cla@)) < &

Proj. onto cols of Q(ct@)):
Q(ara)'aT=Qr'QaT-0Q"

1east sguares for QR =b: OTo%=Q"e > 2:-QTH



ORTHOGOMAL MATRICES in IR
NXN mbrix Q= (v, \7';,... Ve ) ©rthagovnal vecters
Ex: in (&, €,... €n)  or+hogonal
Q orthogonal > RTQ =r1. 5 QT=Q~
Nxnn Akwn

QQT=1. aiso = QT aiso orthogonal

other Eexamples:

2) permu+ation b) rot2atron c) refiections
(3:3) sine wse o) (3)-(%)

3ev\era| refleckhon acreoss Some hyperplane:

vi: Q=I-233T for U=y

? T-9YT sends 4o Ut
Rproj = (X -TCT)X

to vrefiect: ST o
Subtract awnother VU T ¥

claim: orthogonal matriceS preserve lengths 2 angles
T

—
lall=(a) (@)= 2Terar =x"

= lIxn?
(e -(a3) =(03)T(a*) =3 @ s = 3T% =x-3
GRAM- ScHMIPT ORTHOGOMALIZATION

27.',...,\7-‘3* Z“-J‘uu-.‘:‘ns -> fs:,‘ﬁ:}

any basis ort+hog. oA vectors
1N S =
- ary - - ;‘.'V.;
2) Gaz U= PojaT: =V -8 & .&
— - -~
(5..92) oo o B VR
note: . Se =3 (03 -G T RV - Fa GO

-— - — b
- - s (S V‘)_ Sa (Re ¥
3) W3svy- ?"°jsranfw..wz}v.3 = -TF o ﬁd

b cawm decovpre bie W 2 wa are orthes.
Wi

las+ step: §i=po.u for =1, ..., k



E)(omr\ 1

ToP-cs:mLﬂmd vector Space Focmat :
M"‘— F\'I .5‘«5‘?‘<‘ S‘T./F
S i3
See s:)lv\Lks : AL \

Tor o

review | BA

volis

(1) 'l"“J"‘*“’” review / clanFieation

Teview: = i 2 o X 5
S»\bsr«nc S s C‘oszs* F+ n S’ = L Gr“\m thMADH' §VU )etg - ;w'J ):":g % ?q“ )[1:2
- bag, ar
l'l) pi': X {or Xe S (l) (Q'P%).Li Jl:or o\“ % w, Vi 1S “’1:? lxm; og} b“>‘5
i) @ - and "R ES 7. , () _‘U):Q gt

D= ¥, - DS
PI‘ P PzP &' “:’l i
‘ SRR
L:c*urc: ll) pm)ec"m rgwew/clmnh(_»\’noq G,":J, =
E (2) Grqm— gchm;a\*‘ £Xam |¢

T ton build bas:s ikeratively
(5) st minenks
Ql’mml\h

(5) (ch,.{.m_

W'y

n ganrM

B

PRo3ECT onto Span of cols of A (Wl ind. cols): A(ATA)'AT

PRoJECT on Subspace S IS closes+ Pt im S:

1) PF=%X for %eS
XL

Pizp

3 all_XesS
proj . :

oe(kas. 2) (g-P;)J—: for an 3 -3
p=pP"

19

ection '\‘:VICw/C'&ﬂFncm’ho(\ 0"+h°3°’\°“
o projection
projsen subspace Sis closest pt. 10 S:
(1) Pi=3 for XeS ) (g-Pa)lst For all

\

@ zailr \ < ond &l X €S
P-p  AWNA el

Po) = a0 3" pha amimspan i3

5 vector

i} > v v Ay
> P )spangoye = 1 - X
Proj on S\Ab;

V’.\
d Pace S ik : Anf
Is QQ Uh'!rc Q= (% on. [>aS|S 31(1-.

proj on spanfV3It + proj on spPamfPd is vector
gIr

D Projspangdi c I-TFvg



GRAM-ScHmIDT :

: &

finddl orthonormal bas's for x+4y+2:=0
7
is 3 subspace! A=z[1.1,1) LNIZN)

rank(aY=z1, Frea: dim(NwaY) = 3-1=2
(-I -1
- l) - _(e)
Y, 2 = free vars = seecial solns S, =lo/. Sz =\,
-1 -1
g(é) (9)§ ‘s basis for NI(AD
o V2
I s )
GRrAM - ScHMIDT: u.-w.~y
- 2T -1 '.') - {:'Ia)
geae(l), @on-a S ?)-(i)(o = (e

(1), F )2
= - |-t .
Orthonorm . bas:s- EH ol,J3 2 SCunit vect

matrix-veck (Proj Vi onto SPan oF i)

QR FALTORIZATION: (Can use gram-schmiot [G{i’l"'-:- )][(2; __!o')e—]
NXA Nk

for wnxn matrix A, Can werite A:-QR

> _ T - . veper
AX=b & QR¥=b -QT s &
p
S (QATARF=QTE & R¥*=QT b
I blc 0.R.

2x2 OETERMINANTS : # you Cawn  2assign to Square ma+rices

e tells us about Volume, whether Hilre's an mverse., etfc.
(¢ 3)
detlc d) = ad-be

PROPERTIES:
«de+ Iz =)

e row exchange = de+ muH. by (-1)
a b o

. del»{c el) = 'de*{: b

e de+ (A)= det (AT

» det is linear in Pach row:
2) ded ($2 Sb):=saes (2 ]
linearity —
nearihg [ bY det (228 By o (aieyd- (b+F)c = (ad- be) + (ead-Fc)

det (T §)eder (85

[} d -b
de+(A) £ O = A~ exists, A” =det(A) (-c o )
&% b\fd -b ad-be O _
verify: (“- °l)(-c a ) = ( [ ad-be ) = det(a)Ia
det(A)=0 = A doeswn't exist

ad-becz=0 S ad=zbc & {2)13) have Same siope

DETERMINANTS in generatl: odefine inductively, expand Ist rou

G323 Oa23 G2y Qzg Q2. Q2 )

An Qi3 Qg
Q3¢ &
det A:' a;:;e::‘) = a,de+ (“ll QSS) -at: O(G'l'(q:u 0\33) + a.;dﬂ(c\;- aizz
alt. sign



107 DeTerminANTS: Il wmeans det ()

2rbitrary w:

Ayt Q. trosSs out (ross out
: = Q| st row, | _a,,| Istrow, |4, ..
o - . O IS+ cot 2nd col
2 -1 © O 2 =t © =t -1 ©
-1 2 = - -

€x: o v 2 a4 |=+2]|" 2 V| <))o 2 -t s 0 +0
© 0 1 2 Ttz e =t 2

2(2]5 2 )-(0|5 ) e (2 L 1-en)3 3

2(2-3+(-2)) +(-1-3+0)=§

(o Facrows:

(P-1)x(n-1) matrix
with vow i,

. nxwn
col | dereted Cofactor matrix CER

Cij = (-1)'*

satisfies AC" = (det A)In

(a b cu=sd Cipz-c (d -c
Ex:| Az le d ), caiz-b caiza 2 C(-b a

a b\™'_ ' __ d'b)_l r
:d) s detA (“‘ al T oera ¢

1
in general, if AT exists, AT'= deta cT

PROPERTIES ©F wnxn DET:

N upper 4 = der U = product of diagonal elements ¥ can immed:atery Find oler by
1 20'° ox multiplying diagonals

o y 1S4.q
© o 2

Ex: s l-.4.2 = 8

proof by induction:
base case: n=| detla)l= a v

indouctive Step: suppose truve For nxn wmatrices, Show Ffor (N+i)(n+)
O st O
. : QulCu + %20 +... + Oy, nes CF,v\o, - TR ((°F3COOFS\

. .
. TanQa e
CGn - - Gan Cik=0 For 21t k=1 wAaz Cnevntrl o

fovr nxn:
SWAP Rows: = det wmult. by (-t)
Consequence: if A has repeat+ed row, detlAl =D
det A = de+ AT
det (A8) = de+(A)- de+(8)
consequence: if Q iS orihogonal, det(R) = |

QTA=I = detl@r).der(@):1

2 ' © ©o
ex: |3 2 4 °1-5 wote: 2dding mult. of one row o anciner doeswi change det
© 0 -t 2
2 -V © o 2 -V o o 2 v o o
© 312t of]_|O 32t 0 © 312 -« © 3 4 s
93ussian €lim: : : ?: -; - : : ":3 -; - : : "g;’-" D pProduct ofF pivors: 2:2° 3T 5 = §
AN = w =
AR EAFER AN AMNEA
alln al 1R A




*gpad triek, but deon't
Ao computationdlly

CRAMER'S RuLE:

solve A#:zb with dess

A=(8.,.... &), 8.=(b &3 ... &n), Miz= (% & ... €n)
X, O- (=]
AM = (A5 A?g-'-A€.)=lc d‘;---&'.\\-s. x."' .
’(‘m [+ '
det(AY-det(m.) =de+(8,), det(m.)=x
S, = dei-(B.)
det(A)

det(8«) N
Xx:= det(A) , where B is A with kih col repiaced by b

AREA & DETERMIMANT:

area(P) = (b+d)(a+e) -2bec -ap-cd
z ad-be
* in 2%2 case, det Says smihg b, Dcld

area in IR? = |det (¥ @) det (& ... En) =1
- S box wl side len- | has
volume in IR3 = |de0-(\'l'- Va Vx\l =|\-':°l\7.an\'l.;)| volume |

volume of paralnelpiped made out of &,..., Va is |det(P d... G
edge mMatrdw
ldet(@)l =1 B not changing val (rotating i+, ere)

lol2o E16ENVALUES:
Scaldr A\ is eigenvalve of square wmatrix A f there is 2
- - O\,
nown-2eve vector V s.k. AT=ATV Eigenvector
A -
‘Some direction in which i apply @ wmatrin, V doesw't cnhange olirs. i+ just scales
note: some A have wo veal A\:
(Ol)
Az (-10] rotates by 90° - no dirlction
nete: if N(AY2EBE, A=0 is eiqenvave of A
- - --
VEN(A) D AV=0 = 0.V
Ex: Twn has 2=l =2 Tn-V=1.¥ for an S
R" is the eigéwspace associateo wi! Azl

EIGENSPACE: Spawn of eigewnvectors associated wi A

A¥ =20 & (A-ATa)V:=0

det (A-ATn) =0 & A is eigen valve
Ex: A= (-? 'c) = A-A:,,_-(:'u\ -l) , de;(A-XIn)= 224120 =2 no real solns, A=, =8
Asi: A-¢I= (:|' .") . (-ll) in nullspace A-I

i

Az-itAeil s (." :)' (':) in wnulispace A-T
(5 ) =) (5 o)a)==s(:i)

3x3
can AER " have no real eigenvalues? o no! det(A-AI) is deg 3, always has real roof
330 matrix 2lways has 2 real A. (21 odds. net evewn),



2 2-x 0 |
ex: A= (P 2), derta-azy= | a.x]| =AT-4A3 o A-2= 21 5 Al as2

[} - Ll
eigenvectors: Asl: A-T= (n -), V-=‘(-t) in N(A-TI) vote: Vi L \7;

Az3: A-3T= {. -.), \7;=(:) in N(A-T)

A'e° (-'.) = - (-:) - scalavr s SN jos+ |

A (1) =3"(1) A (2) s A [ (e (2)] =30 (0) + 1 ()

nxn matrix With »n distinct eigewnvaives diagownaliaes

A, o, A distinct eigewnvalues
Vi,.... Un eigenvectors for each A AX= XA

X = (Ve,.... Tn) AR= (AT, ..., ALY = (AT, ..., Andh)
(2.
= (\_I:"'-o \7‘»\\ °."\a

o\u. o
x| © ‘an

claim: (f evals are distnet, X is invertible

X invertibie, AX=XA =D A=XNAX"'

?,",) ,0isaa, v:(%) eigenvector

PF (2x2 case): suppose €U, + C2VU2= S
(A-2T2) (T +caTr) = cz (A-2Ta)W 2 ca(A2-A) T =28 B c2z0

Same arg. w/! (A-ATIa) Dc.z0

4
1o/22 [ CSR AR=0%, R+3 Aeval, R evec
/
AX=AX &> (A-ADR=3

’>\ eval =D d\c‘\(A")J.)‘O
Charad’érﬁ*,(

dl**or\&, X of AX’XA "‘VCPLIHQ

»; rA“ Cv,\t O\

DIAGONALIZAT ION:

AXz XA, X invertibie 5 A= XA X"'

S A™= XA™XT
A & C=8"AB have same evals

C=8"'(xAX"')B = (B7'x) A(x*@) = A2 C similar

e Az (03) A™:2 , A vpper A& = azi 8 A=3

Azie A-za= (82, &= (a)
x:3- Aa-Ix: (33), &= (V)

Aa=(53)  x=(s!), x'=(67)

Ame (80050 )= (o3 )6 )= (o 5



DETERMINANT & TRACE:

recall: det+(AB)

det(A) det+(8)

1
det(A™) = odet(ar AA-'=T

det(A)detrlAa-t) = det(T)= |
i A=XAX", A diagounal
detlA) =z det (XAxX') = detx)detr[A) de+(x') = det(A) = A.-Xa..-An
mxn nxm NXM mxn
trace of AEMRV*™ s dr(AV:=Au+Az2¢+..* Am Sakskes +r(AR)= 4r(BA)

FelA) = dr(XA X)) = 4e (X "% A) = 4 (A) =2 +22+...+2n

br(A%) = +e[AX) = AR+ A% ..o+ A%

FigomnaAaucer #s: 0,1,1,2,3,5,8,... Ficez = Fret +Fr
Fnu)
4 R = | P
Fis+2 Fi4) +Fie (l 1\ [ Frew - €, .
a‘k-’l:(FKfl):( Fr+ )= '0)( F&)=A“" .‘7‘.°=(Fo)=(°)
=2 1+J5
det(A-ITx) = 1 =Aa] = ANl =0 > A= 2

PR (a0 D ) IRNR i DAY 4
s R 2EA o ((EY (SE)<)

a2 (SR dm) oY)

ExAM REview: IT

.vector space closed wunder c.7 +C2T2

. basis: lin. ind. vectors spanning vect. space.
‘lin. (ndl. ¢S ind. of idea of do#+ prod.
c any vector space cawn have basss

- complete Soln: used RREF & elim, cawn Scale.
- got special soims (bas’s +o nullspace)

. projectons:  P=A(ATAY'AT proj onte [49-9)

nxw

- orthonormal OQLEMR -» P:@QQT (colomnsS = orthonormal)

‘gram Scumidt: U, T3, U3, G4 & wneed basis For space [need tin. ind)
= (F wo+ B)

- o

- W, W, -

Ng:V;—WV‘

W .soive ATAR-ATE ¢ least sgs
caeR™" 5 QT@:1I, QQT:-1 *

— length & 2augle kept +he Same -
R

R% c(AT) c(a)
e FTLA: A (mxn) R™>R" | |
N(A) 2 N(AT)



T e viaat A?'-'}\') Gaenvaliue AciS

P
5 ewenvecteor Vel
AT = (AATR-S

t Abas dsinct

evaly ) A o diasgraliaabt

j"\ (i’_ %r;-..g’)@:. 3 Q‘)-l

v 45 Dacy

4 18 Ui

Char. poly

10127
S symm. @ V's For dife. As acre L
Lm: S=8T, f A F¥A2, then V..v2:=0
Pe: WISH = BT (AaW) =, W
Wisip = (ST9) W = (sB)T R = (AT)TA A, N

= (M-X2)WTVE=0 AErgD2NTV2 =0
Ex: (":) > eigen pairs A= 2, (-’) o. (-'n)

S3y 2 watrix A preserves Swvbspace V f VeV, AZ€eV for AeR"™"
$03 s preserved

VeER" preserved

if V is e. vec. of A, spani¥3 preserved

Lm: S=ST and V is preserved, +hen V' is  toe.

Pf: \e+ VeV and wevt
know Svev = dTS?:=o

= 3TSTP:-0 » (s3)*¥=0 —~» S3evt o

ex: (42)
V= za(.:) aerkge viz$b(l)|beR3 ais0 preserved
ex: (o1) vs §°(5)|°€Rg is preserved
o) (e)= (o) visFe(leem3 is ot (51)(2)=[1) &t

NOT Sym. Sso propevty ocloesn+ hLolf

QRUAORATIC FoRrms

for SE€RV"*W, S=ST define Fx.,--., Xn) = XS
Ex: S= (:: , F=(x s\(: f (;)= (G 5\(::?::;

Flx, 4)z ax2+ 2bxy+ cy?

def: S is positive definite if f(X) >0 for X% O

Ex: S-= (;?) > £=x*+49% (pos. def) @

Ex: | S= {c's-on) not pos. defFl £z x2-4?

Ex: S= (L:) is pesitive semi-defin:te: £ /s ajways 20 » Flx,y)=x2 4Lx



EX: C[k,g): axt+2bxy+ cy?

Ex:

Ex:

10/29

2ax+ 2by *
Sf-26x+2¢cy =Zs{5) > for general wn,
+ake pariials

Thn = g(%)z %2+ X222 +... + xn?
2.)"

og (¥ = (,_';,,,) 228 = 2Tu ¥

CONSTRAINED OPTIMIZATIOAN (A -mult.)

26". = Aag €ind A, X Sa'sfying +hes
9

Gf=2s%

max f(%)

Subject to

a2+ wmax of F(X) on ||RI12=1. we have 3n ergen vect x

we just Showed: S=ST means S has @ least oune eval

12as+ times ST=S =2S has @ leas+ owne e. val

ST:S, S presevves V=> S preserves \U*

SPECTRAL THM:

S=ST 3 jhere S awn orthonormal bascs Vi, .

Q:(Vi,....)  SG=pA, Q'=QT D S:=:aAG"

3(R)
h
lx21 =

A and evec ¥

& e.veec ¥ ExAm 2: % Q2b,3b, 4b

=
.-, Van oF eigen vectors



EX:

1ol

S= ('z;-) have eg pairs . (-") 3.(")

as(na a) = (2= (va GE)e S)UE WR) i base gs S(0R). ()3 se(o3)

s*(4)s =(L;)K(;)s ’(sx“5)3

AE-,,\,,:«*I:\ |

Complex Hs:

2:a+bi SatrsfFres i2z--1 oazRe(R), bzIm(2)
4 -+ x Same a, belR

complex towmjugation: for 2oatbs, Z-a-bi

L
o+b: norm: la+tbil = Jat+b2 & dist 4o O
R - 2
¢ 22 = (a+bi)(a-bi)l za? +pb2 = |2l
Q-bi
2 2 & 206
division: W < W & T )wii?

—

Useful Facts: 2+w = 2+ &, qwz=2W

evier Fformula: for BEMR, €'%:zcoso+isine 3(ei®]=|

FONDAMENTAL TUHM of ACCERRA:

every complex pPOlynomial of degree n has w Ccomplex roots (possibly wi

HERMITIAN INNER PrODULCT

- pry - — —
iF 3,8 e€@", V.R=z TV Vit avat--. + Wnvne C

define U*=TT, U, " orihogonal if W*T=o
2
UG = vl P+ lval® 2 )lvan? = )PNI2 € R

N S
note: V*J  [¥Z, but they 2re Complex cowmjugates. VI = JIAT

math halle

w2 EN ‘*._\,ﬂ\?

_Je) (\‘:.\ N\

repetition)



For AE L™V, A% = AT (sometimes ciribten AH)

HERMITIAN MATRIX:

Ae ™" is Hermitian if A* =A (compiex an2logue of real symmetric)
on diagownal, Aii=A; = A €eR

(z 3-3;)
3+3: § Hermitian

Ex:| A=
2-A 3-3¢ 2
e. vals: det(A-AT):0 > [343; s-a| 5 10-72a422-(9+9) = A2-22-8z0 5 (a-8)(Ae1) > A=~y
3 3~3;) R ('-')
As-1: A=(-\)T = A+I = 343 & > v (o
-6 3-3:) - l)
A=8: A-(8)r = A-BT (33 -3 [2Vaz L1
note: U.AVr = (1+: -l)(u; i
for Hermitian wmatrix A, ') e. vals are real
(2) e. vecs for distinct evals ave L
UNITARY MATRIX:
Med-_ S ounitary F A%uzIn S u's = kevery ovihog. matrix iS unitary
LNnitary maivices presevve length & awngte
ex: nzt u=e'®, utu=1 10: Q=[]
ei®(ei®):= Nuzn? = (u2) (ug) = X*u*ux =%*% = IX12
(u)-[U8)= 3*Uu*us= g*2-%.3
] ) ] ]
N R SN R I . - 2riln
ExX: | L= y2 (' ") . Wsvyg (.‘ b I 'z') discrete Fourier matrix. Ujk = uu 1lk-1) w=e
ni3 MATRIX POWERS + ExPomeEANTIAL®
1]
recap: €%z 14X+ Zx+ 3""* R
dldy (e**) = ne™™
' oo
ex: | A= (50), Az=(o e), A= (% :), etc.

eth iz T+tA+2e2A%+ 3T E3A% 4., ¢ scalar

- ! '

for thes A, e"=($7)+(:; = ol)

etA. (;,' )*t(:é)-'(; .t), e~tA. (Lt

etnetn, (L0)(at)e (o7)-1



EX:

Ex:

A%: l;?( cs-I A3=AA=-A, AY:I

ASz-A, AG:-_-1, A.’=-A,A3:

etz reeax r
G 8 +S  ¢?
-I(I~L %7-27-0%74 )‘Alt-—*';';")

Siné
A toS+ n

e’z Icost + Asint = (-S-’n+ c.esl') érotation matrix by +

+A _
PROPERTIES: (-)ae e™= Aeth

d _+A
et

2 +3 2
oF =£‘7lI++A+ TA+37A ) = (Avsars :—A‘

) (erA)'= A
Skmmebn‘c
(3) i¢ AT=-A > e*A 'S orthogonal

(4) AR =% = e*tAx-= et s

AR=AR 3 etAR: IR+tLAgsLAtEe STAM 4.
£ leng + Sarge Gy
(eo\\‘ (ﬁ.x\’ )R zet s

= (Ve (eny e

OIFFERENTIAL EQuUATIONS:
£'(+) = ofF(#)+ bF'(+) o.bER A alr)

) ( ‘4 ( (m-)) N
R+)=e0) €7)] " la b [le(#) a'sAR Soln: R (+) = e

2 ts 7 (X4
-I)+ 3. (A)*-q. 1*?«“: -T)e o = (-A) + a7 L+

e)

+A 2(o)

Q'(+) = AetA (o)

£z af + bf'+cf”

£ [ © 10 (:) ' °
. -y " - o . '
17\' 5 (:u) a's {‘u ) ° (A : :' ) I Soln &)= etA (o) (° Qv\)

£(4) = -F(s) o A
£(+)  solves flo), £'co) 3:ven soln: @l+)= e’ dlo)
c . oSt sint Flo))
n: (c) ‘= (r) (-« ° )z .sint cos+/(£(0)
spring oscillakion £(#)= (cost) £I0) + (sink)F'(o)

/UL

® good +es+ quesion



s SINGLE VALULE DECOMPOSITION:.

A:ULZVT , AER™™, UeR™™, VER™" ¢ U 2 V both octhogonal
9

(r._o ) g.. 0 ; o) orthogonal, Z e R™™
man: Z20"g0n], mecn: 2= °0u ‘diagonat” (&i;z0 for i¥j)

Ex | A= ig) qoal: Find ¥, V3 orthonormal s.i. (AS)- (A ) =0
AT
set o= 1A%, & = &
A +kese'
aaz AT, &= a-: e 2re L
. ' A ' '
900d quess‘': W= J_?(:) > A\*’E[eg)(-)= Tz(;) = a2 ||ATI?= '8,:'
a: Z0) > an=m(EN): ®lE) 3 ovnamier -t
gamd)-=0), n-20)

g, O

u-—(ﬁ’. a;), Z = o o/, V:(Ti‘.\-lhg)

3/t lIJB) 305 o {'IJ'z' llJ'i)_ s q)
o &)l :

Az LZVT: (-wz 31 T -uss

input:

- o © T V'T)
- -
(@ @& o oullatr) = (e end@ )l dr) s cddre oy

~ 2 2r
for A, rank(A)zr, Az RTT+... + OvGrVeT wnere 2G:35., EV“;::r are own bas's

and AV = 0‘;&';[ isly...,n, O07:=0 for i>r
05 = Singulav values

-
Qi = |1eft Singular vectors, Vi cight singular vectorsS

A=UvzvT , C(LI=R™, ((V):=IR™

D vank(AY:z rank(Z)

S T has exacily v vnon-zero  diagonal elements

How To FINO Sveo:
if AzvzvT, ATA= luzuT)TLUZVT = VETLUTUZVT = v(ZTTEZ)VT
ZTz erR™ d:agenal
= T
T el e
proof — (ZTZ');j = E;(t )"j'_lz )") zi.i Only wWwhen izy

(ATAYT= ATA

SPECTRAL THM: Orthonormal basis T.,.... Va of eigewvecters wuith eigewvalues

o, o2, ...

’ T



ATA is positive Semi-definite  (AY)TAT

nATN?
ATAT = AV = PTATAT= ATTC = JIAGIIZ = ANTH? - Az giE 2 rza?
AT ara  (ATITAG VT (ATAYY;
define @iz g . Wa = TeT o o o}
= O3t
: ‘-“"TVJ' 0. 05 z0 e wi's are aun L
(S 4 - (zs 20
ex: Az lo3) » ATA (20 %
28-A 20

2. 2 -
det (ATA-AI): lu zs-»l" (25-A)2z20% 9 A:=S. 4s

Az US: ATA-USI:z (-:: -zz‘:a)"vﬁ;—i(:)

AzS: ATA-SZI: zz:» ;:)*Vﬁfil-'l)

niy feview SYD A’ QZ.VY
Y P T ‘-:\%uwl
YRR AA~(bzvy Uy
=VE VT \ :
LY ZVYTU- it T

lalss, AN =)

Ex: | ATA vs. AAT
ATATY = AV D AAT(AT) = A(AT)
if AT:20, Xi, AU: eigenpairs of AAT % AAT & ATA have sowme now-z2ero €.vals

if A0 23:=3 = Ar(AT) 20 = APzo

Ex: A=(§:-ﬂ ATA= (E‘E :?:) aN=8, é‘,:(?’) A3=0
AAT= '53 -:) A <8 -IT'?.(I') A2 =2, €7 l.‘:’) ;33(2)
M2 .T-._(:)
o= , \_ﬁ=($) a.: .F:.l-:) A:J?(-:i:‘f)loou) + J’Z(::::\(I o o)
gi:¥z , §= (i),u_;=fl‘3[:) :(::’;.)"l:::)
Wz ISz \[J§ o: o oo
Az gz 'Sz )(o () 0)('0?:)



nna

PrRiNCIPLE ComPomENT ANALYSIS:

Ae R™™ s wn data points col;(A) e R™,

2 -
with AT = £ ¢coy(AV=0

1eft+ Singular vectors give perincipal

COVRriance matbrix
ﬁ

AAT= R?"2
o Re.g.decomp.
e

"= telting us direction

AR MY
\ , ,hlh
Az=UZVT = 0.9 "+ orde ¥,

AV

Review: SvoO:

how *+o Find: ATA:= v(zTz)VvT
r.‘sh{
s-‘ng.
vecs

Qi
]

squared

§ing.

lor Av=uUZVTV
vals

NORM of A MATRIx

for AER™ ™, rank(A):=v
a) Frobenius norm: llAllz = Jm'*---*ﬂ'f'
A= a
b) spectral novrm: [lAllz= 0 = max |ixll,
X¥o
) nuctear norm: lAllyz o+ 02 +... + 0

nore: || Tulle = J|+...+| =JT

Nxnllz = ¢

NTalln=wn

Allf aiso comes From oo+ prod: A-8 = +race (AT8)
NAI? = A-Az+race(ATA) = 724 ... + 02

NAIE = 4r (ATA) = ,é_.“'ilA\-wulAH ?.
NXN matriceS (S vector space

Symmetric matrices A=AT subspace

=

g, t20s...

rank(A)

P ol

= vz)

& Wwhat we've been

" wn
:Z ZA

1Y) Jst

components of datra

PICTURE ofF A:-UZVT
v
A
—_—
Vv,
v‘r
Z
—_—

working wWith whole +me

ij 8ij

Closest Symwm. matrix s (At AT)/2
A+AT A-AT
Az "2 " T2

1
SYywmwm.

Skew Syvaw.



EXx:

Ex:

EX:

EX:

Ex:

Eckart - Young Theorem:
i 8 has rane(8):zk, +hen llA-Blle Z HA- (0 &3 + ... + T Tk ) e

#single best choice s the Ffirst k terws?

LinEAR TRANSFORMATIONS:
V,w vector spaces
lineavr +ransformation S wap T: VAW with

2) T(T+3)= T(S)+T(2) for 211 ¥V, meV

B) TIx®) = xT(S) For all TeV, Scalavs o # if %20 linear 4rant. maps O +o 8 TI(B):=0
O T(B)=0 !
V=R Tix): 2 x v yes linear +ransformation T(x+5\ = 2(xty) =2x+2g = Tle+ Tt';)
T¥x) = 2kx s T(x)
T(x)=x* x Ao T(2)=4, bu+r 2TU) = 2 x
T(x)=x+)1 X No! T(o)zl . Can S2+'sfy T(8): 0
Te)=Ixl X No. T(0)1=0, but TUY+T(-1)=2 ¢ should be O +the by vulk of lineawrity

Can represent T: R MR™ wl wma+rix
Az (TIE) T(8) ... T(E) e R™™"

T(Z)z T(%:8 +.- + %) = X T(E) ¢... + X T(Eh) = AR

KeRmEL: ker(T)s= Ev'e v | TR):=8 g ev

IMAGE: rangelT)= gTW)| evicl

v= £ poly of deg 22 on R3, welR

T(ptx))= pl1) v yes L.T. T(2-xe3x2) = 4
range(T)zR ¢ dim | possible bascs: .13
dim(vi=3 possiele bas's: 1% %23

FTLA suggests” dim kev(T) + dim range (T) = dim (V)
T 23S 2 matrix  in wmadbrix in basis  Flow.x23

L
T(a:+aax+ azx?) = a.+az+as A (:'s) = (ataz+ a3) > Az« 1) dim(N(AY) = 2

dim (c(ay) = |



nny

E XQP"“I: To]’/-cs o\e-\' + V‘;’“'“¢

Frd G |
. a‘v, 4 : sﬁvﬂti ) e'gvcc Lc’“ﬁjﬁ‘vo\at-@xmn
——— Y™ makrices, guadl Forms)s chHk
- CMP'@;( 'lr\c-u- a\dgb{a F 2

* Makrix LD+ -\
: P* A\ ¥ gars
SVG‘; hob*‘bfmd, rq.% Apprex

ex:| V= § polynomials on MR 3
P(x)=> p'(x) devrivative is a linear wape
using basis B: Ftox,x2...3%
Can  encode derivative by wmatrix A with Ai,i+15i 2nd 2eco oc+herwise

Hdx (2-x+3x2) = -1 +6

Tox %2 coeff.

T o ) 2 -1 '
st x [0 o 2 t)l=16 |«
it3x2 \e o o 3 o/ x?

CHANGE OF RBASIS:
T: R2 > R?* identity T(#):%
t o
in Standard bas's (eu
] (-]
bases: input = (0), Ve s {‘ )
) (]
ouvtput o = (' ). Dy = {")
T 25 a wairix in  +hese bases: “
1 l)
Tz (&) = 72 + 2 &y (ug uz) « {' -
=

. - TP
T :=(3) = vad - 12 &2

BE

W, (z

Ex: if i want (3) in  bas:s B'E(")
® ") in +ermsS of w

) (3= (2) I

-
v,
Ve ':l;

in _general, Ffer T:IR"™ -2 R™ with AER™™™, in sid. basis

\-h., eee, Tn new fnput bases V= (\-,.'l e e, ‘7:‘\ e R™"
xvn
"-‘"'. e e W nwew oubput bas:s N=(°?',...,wn\€l ~

-
\7.':\!?, " (:l._.' s Nej



CLAIM: iew wmatrix for T is M= WAV

B

PF: want Formula for M sSatisfying T(v )= &, Mlk‘:’.&= Weolk (M) = colic (Wm)
also, T(Vk):= AU = Acolk(v) = colk (AV)
=2 cColk(wm)z @ik (AVv) €or all k = wm= AV, M=z W' AV O
Ex:| AeR™", A=UZvT
new bases (A output, V inpot
M= LTUZ VTV = &
Ex:| AeR"™" , A=z AT AzpAUyT
new basis U (input + output)

Mz VTUA LVLTL= AL

(Sclnur Fa-w\)

for A#AT, exists unitary matbrix W E """ with Az UTU”*, where TEeL™" is upper o

det (A-21) = detlLlT-azIU*) (Scho- form)
zde+(r-Aax)- ;73'. (Ti-2)
if A Lhas n odistimer A, Az=SAS™ S, A ed™"

new basis M=ST'SAST'S = A cdiagonal, but S is nvoT L (Aistorts S)

o 1
JoroAN FoORM: what f A has repeated As? EX: (o o)
how tclose can we get +o diagewnal?

.. o "}":-?)
Az SIS, Tordawn Form ° 3. where J4A. oOcC NS

nn

o !
Ex: (o a) not diagonaiizable!

s(ga)s' =S(aI)s" =aTI

Gooo Bases ForR FumcTion Seaces:
* Polynomizls

* 4riq poly (polc_., in Cosisin or in e:e)



Ex:

Ex:

ORTHOGONALITY: {‘l~)e(aldx= (o) L2 inner product

eiko for k=z0.1,2... on [0, 2=%7]
2r —_— LI . k-2 ' i(k-2)0 | 2x
.L eik® o 26 yg = L eik0o"it0 o - _fo e dae: ey & o 0 kER
r4.3 k=R
DerivVATIVE a3 Basis I ei® e?® p¥0o...
' (o]
Matrin ei® i O
ez:e 2
el.‘O O 3'.
°
-1 D
matrix For £": 0 o —a.
: i‘ -ll -li :(‘éoi‘ el":l)i eR; e?lz““
: .-.I _|| -il & (eo% ghelai gNi2i edxrarz ;)
0 */p w 3%[3 3
£(o)
ey o
e (w . 2:0 v
represent £ (3n12) in +erms of |, 21_'3, e’ B e*
©0s® c(os28 tos30
£ sinD sin20 sin39
ceal Ceaig
p—-0 — — o
2= ”\ / X > |Cieieg
Cse2i03
Cie!-'eg
2i0
e e!-'G
Legendre poly: Po(x)=| Pi(x)=x Palx) =% (3x2-1)
S24isFy (ne1)Pnai () = (2n+1) x Pa(x) = n Pa-y (¥)
nzt: 2Pa(xlz 3xPi(x)-tPo(x) = 3x2-| = Pa(x)= i‘l3x‘-l)
orihogonal on [-1, 1] scaled on Pnl(1):= 1
] ' ] ]
_[., xdx =0, J_, 4 (3x2-1)dx = (;"3‘2"‘ ) I-. =0
' 2
Q: what poly of deg £ 2 minimizes [-. [Pty -e*1 % dy
S.v .
use orthogonal basis! Projed = T .o ¥
I e™dsx _ e-e”
T i 2
§o xeXau
X = 3e7'x
§0 e ol ISt elts in +aylor serces:
T 3(3x2-0)ae exz l+x+ﬁ:-'

2(3x=1)= 2 (e-7e) = (3x2-1)

2D (¢ (3x2-1)) %

S(e-9e~)(3x2-1)
y

bes+ approx: Pl = SLE= 4 36t 4

% very Strong aperox!



5‘5(37 (2) Mac kov ma‘\l‘l<cs~ S{’oc\nqs*"n( vec
L|t l
(S\ CQhA ‘|m‘

() tvn maultivarable ‘(-r\
+ h
nha (6) errir read: merical st l;..hl\j

Lactuce: (D cjoo& ERSec I -rn Spaces
(‘1 "f‘c'\r Pr03ran\Mnn
g <ol codes

N
Fouﬁer makrix F= ( XS Xh))

() L=
U N roet of unid

lagt Fime

§®
F K( ) Qves § SPProx as camb 0{ eM
305E) R TR AR

or*\:\aj;.m\ m; El,i]

LCﬂCf\Jl’C Pd'g P(x)ﬂ
Sh\S()\)?)lx)dx is (S.:)

P(x)=
Rix)= 503

.
o FVdx 2 2§(0) & midpoint rule

exi | Lo fdx = £(F) +¢(F) Rprp vy

L]
vote: [_, Qo + A, X% = 2 o
*integrate linear £ounc €rom
P(x)= 0o + x4+ O2x? + O3x3
[} ' 2
I-l Plx)dx = (Q°"'3Laz":) |-l = 200% ?c“"‘ =

—T 3V notown exam/psel

GAUSSIAN QUAORATURE:

1
f.. Plx)Ax = WiP(x:) +..- + Wk P(Xe) for p deg < 2k

CLAIM: K points are roots of Pyg(x)

Polx.) Polx2) -+ Polxw) |[*" §.1 Polx) el
Pty Pilxz <« P, i) : -
: we
on exam -» MARKOV MATRICES + STOCHASTIC VEcTowrs
1) 211 ewntries 20O
P is sStochastic i 2 BTF =1
AeR™™" s Markov if every column S Stochastic

=3 AT1:=32 3 1evalof A, 1 evec of AT

note: A Markov, P Stochastic => AP stochastic
PF: AP h2s non-neg. entries and
=2 AR M2rkov

21so0, A.B, Markewv

EX:| game -» start W/ # wm=0O
iF m (s pvewn, deo nothing w/ prob. '3

2add I wl prob 2/3

if m S odd, double w! prok '/2

triple wl! prob ‘2

=l o 1= multiply by 2 & ge+t

565'\’ O\P?fox °F ex Min &_‘ IP(X)'Q‘Ilc)\K ‘(‘Q(‘ P(x)c\eail

Solo: Pxy= &R e-P,
‘)*’ + F’Z
B Re¢ o 2O e R

Taalor Senieg Q(X) = ‘+ X+ _'2)(1

in teqr2)

PC-3)+p ('1y3)

Choose K poinis 8 k weights +o inteqrate polys of deg < 2k Exactly

(k4w Legendra pPoly) 8 weighrS Soln i{o

(AB)TA=3TAT1 = p7i=)



Q: | what Fraction of +ime is m odd?
prob odd @ step k ) (-lz
Pus= lprow evene seep ) , Po=(7), A= 'T:
odd

Eg-n = Aag = 60: = A%gs

- odd
» even

if
even

/\.
Azl, $+r(AY='12+13=5/6=Ai+r3 DA =-VY¢g how?

-2 2/3 |
A-I = (-lz -213) - = (S!H)

-~ K- o0 J ql,)
P —— ¢ 3151) = \3n

Nl24 MARKOV MATRICES + STocHASTIC VECS

A% (c. V. +CcaV2) = c.A KV, +C2 YL R

e ¥ 4 ca(-Y0)k V2

review: ﬁslu."mﬂ'.c ok f,'ﬁri” ,A Morkav F cals stochaskic

+ enkries 2o
P - (- SR -

°‘¢°Jes F"L«‘:-\o*ucs) A: ; e

O - Aoy

I( 'h"A‘\Sl“'\Ot\ -
(Oé) ﬁ) 1S Prolx, ’j' ven 5\,&.\!) A A
Py 15 P'ob ot

belﬁ3 " S‘l’&&e)

Ex: | CAR RENTALS = fraction of rewntal cars in Denver is 'Iso. (CLYZ?S

encades 'Lransllﬂoq
Preb

\ +(’.(‘ (A

P Kv? P”b'( for 'DC-AQ

in 2ach shabe

not in Devwer.)

e2ch month, 800sio of Denver cars Stay in Denver, So/o outsSide cavs Come in.
WWhat (S aSymptote Frackion ©F cars in Oenver?
(-:se «in Oenver (Aus 2o )
'-; = \44/50 [ € not in Denver Az \'Is 1al20
.* tn¢+ in

(1]
A3 prob k month in future Oenver Oenver

His d2eo
A= (lls mlzo)

4.s-x V2o
s 19/20-2
-is -i1a)20 ' .
evec A:zl: A-I:{-'Hs -1 20 )""’“(") A"ﬁm‘-(‘*)

detlAa-AT)=

+race

= (w1s-a)0a120-1)- fleoz 0 o A=\, Yis+ @20 = 3/

-4
ES 5

LN ]
Ex: (oo) special Markov chain. eve¢3+h:n3 moves to Sta¢e |.

note:| AKX marrkov > 321 eigenvals of A |A) S|

thm: if A s Markov wi

- - -

R has + ewniries and AXFSE (F... R)

Ex: | PAGERANK n=# web pages

WR; if page j links +o P2ge i
O oinerwise

A=

A Marikov not strictly positive

Oscsl

G= cA+ U:\‘) 117, (.':)

+ entries, then }here's

2 unique Stationary vector R wl AR:=R,
1 o 12
o1 2
0o o

Lj= # vris page j links +o



MIANIMI 2ING MULTIVARIABLE Fa
F(x): R" > R

Taylor Secies: F(R+aR)=F(R)+ ak PFF) + T &x "H(x) 4% + O[lla%113)

{8#/9:. ) aF
— 3
VF(x) = \oF/oxn [H(x)],-j = /axsaxj
gradient Hessiawn
AxTHI) A x
12N review: fonc. F(R): M" 2R has quadratic Taylor Ser:es: FIS+a2) R F(R1+ Ax™T UF(=) + 2!
IF/ 9%, a2
—S ( i ) I 2%
gradient VF(x)= \3F/axnl , Hessian H(®R)eR with R(R)i;z Oxidxg
(zu-ogl) ( 2 2y
Ex: | fxey)s %2+ 3y OfFz \2xy . H(x)1= | 24 2x

(2)eze e o)(3)=xt
t24lor series 2bout O Flx.y)X O+ (x y)\o +3(x y)lo o E
evai1.Q 0

GoAL: minimiae Mulkivaer. fn min F(R): R R

if F IS Convex —> minimum occurs @ point Rw where VF(E‘»)=6

2150 perform Taylor seriesS through gradiend OFn: OUF(%eaR) = UF(R) + HIX)as
+o Find OF(X+aR) =3, guess

8= o) + H(S)ad

& o

R e
H(X)aR = UF(RX) D aR= HIR) ' of(=) > aXz H(F) ' or(®)
- - RS Brar ey
NEWTONS METHOD: Xkt = Xk - H(Xik) VF(¥k) Pro: very Fast
1
Ex: | mm 3Ix3-uUx on [o.00) con: HIR) must be invertipie,
Covwex-'-i»s
OF(x)=z x2-4 H(x)= 2>
Newton: XeersXk= (2%)™! (X2 -11) cheaper idea: make F(¥) Smaller by moving in
Xid-u
SXk- 2%k direction opposite » - UF(R)
u 2_S§ S22 u
XoSH, X7 3+ =T , X255 2 sl o, X320 2.0006, Xu 2.000000009

—

GRADIENT DESceaT: Xk+i = Xk - Sk OF (Fx)  for step size SkeR
Ex: | F(xy)sx2ey2 , guess xo=us= |
er=(32) wmr= (2 37): 2z
co: Sen) = (82) -25(5) = 0200 (35)
i€ Sz'2: %70, y.z0, S=i: (1), (23),[!)... oscinares
(;:)”"253"(:) IS1<1 > Kth Step "(;:)"-‘-J’ili'zs)"

NEWTONS: X1 = Xk- H(Re)™' VF(R«)

on) -4 (zuc) = (<)



Ex:

1213

by linear prog,
these Shooutd
be equal

[

LineAaR ProcrAMMING
c&vu-rg u:se-l

min €TR sobject +o AR =B, Xzo
Xi+x2 £ 4
3
min -3xc-2xa S.t. :;;‘;
x >, o
T x 2
! (]
N
— X
Start @ (©0.0), move along edges
(0.0) - (2.0) - (2.2) > (., 3)

-3(o)-2(0)z=0 -3(2)-2(0)=-6 -3(2V-2(2)=-10 -3(1V-2(3)=-9
— -l

OPTIMUM!

SImPLEX ALGORITHM: Find Cormer, move along €dge wwere CT% decreases,
S used when Solving 1inear System
LINEAR PRoGRAMMING:
min 278 s ARcE, %20
dual: max {78 s.+. AT§22, 420
max §7b 23AR =(ATE)TR 282 Lin LP ciass, see ), (2) have same Soln)
EX: wincut. max flow m2x flow Flow @ wmost capacity
® on edges C eacw edge, @ each verter,
\LXB “ af\ 3 flow in = flow owut
s " ¢ 3 '°t t

repeat.

MIN CUT ON EOGES: minimaiZe Sum of weights of cut RdgesS +hat seperases s from ¢

flow: U
cut: IS

EX: Simplev graph max Fsa + fso s+ -3<fsp¢3, -dsfirsu

_“<3TN>_’ “2£ Fso €2 Fsazfap+fat
5 . . 1€ foos) fsb+fab=fot
2 \% -1 & far el

Ex: +wo player games

player R 8 C, paycff warrix A

Player R cCtooseS 2 row i, player C chooseS col j, resvi+ Ay

R wantS wmin resSult, C «wankS +0 wmaximiae reSuld

rock paper scisSoc

rock fo) 106 -0l
paeer | -10© o 106
scissor \ 10© 106 o



(l o 4 Xy #x2 =) X, X220
Ex: 3 - 2

Yi+Yz +93= 1, 9:,92,4350
e+ 3-%g =4 21 +2:%2 Xizly
R cnooses x s.t. x4 X220 2D x2:=3q Payofe= 1 (1u) + 3(3r4) = Sl2
1y, + 4yy= 29, +2y, 4, =42
C chooses y S.+. Ytyy ol 2 yazi2 payofe= t(12) + y(uwz) = Si12

for bigger AER™*™, yse LP:

. > s
RS LP: min v s.t. X20, T =1, RTA 2v
. - P T A < o
C's LP: max v S.b. 320, 3T =), vIl € AQ
1218  B16 Pic of LiNEAR AL
objects: vectors + lintar IransSformaiions
R7NA"  2ny set Fn satiseies T(aRk+by) = o T(R) + bT(F)
matrices, Slosed
vnder
Poly, erc. ‘*Obg

BASIS: Coord. Sys. for vectors, allowS \Vu. $rans +o be representtd by matrcer
2 @8I TOEAS:

) pre-image of I'a. drans (AR:=C)

2) best approx.

3) Finding 2 goool bas's

1> | PRE-IMAGE ©F Lin. TRAAS:
want +o Solve AfR=P

Climm Mmairit

if _IR™" ;hvertble = PASLU Fact. Asuz(Ennei... €3, E2)A (i€ no zero pivots)
Perm oulr vpper
[ o

EX:| 3x3 watrix Hhdt Subtracts 2 -row. from row 3:
(ae ° _—
. -l
E: .1,,0,) A=(En.n-|,-".5a.-) 2
i vnot square + inveriible, more complicateol
useful Subspaces: A(A)= E % |az=0 ; Ctar=§a%3
rankelars cm(CCAY)
FTLA: N(AYt= C(AT), C(A)=AN(AT)
BASIS: lin. ind. vectors +hat SPan space

full Soin +o AR:zB: Re+ €& +...+cesc, wnere

ARp: b 2 N(A\=$Panf€': coea S 3



Ex:

- o

RREF: #ool For Finding Xp 8 bass for NI(A) €A et
121 0]y 12 0]y 121 0]y 12 p -y = 2
N (zuualz)_.(oozs|-e)_,(ooza-5)_.,{00.-4-3) - _°3
lale)=lueg & 8lio oo 2 gl-6 ocooolo cocoolo Xe* \'5
REST Aererox
besSt bas’sS: orihonormal a.,.--. 9k a‘;-i\') zo i#j N§il=)
Orinog pProj. onto Spanfdi..... dkd is GQT, wwere Q= (&, ..., 4k)

i€ O is nwn & real - orthogonal
if QR s complex -» Unitary
GRAM ScumioT: builds ortheg. basis

basis ortheg.
ii‘., e, )?gi — §V., ...,\-I.- 3

- o oo T
. Vo' T - o v.v.T . vava' _,
- - 3 -
Ve = X0, Vg:i“z - TTd %, 3= X3- GTo, %3 CALY x3

LEAST SQUARES: f ARzb Was no soins and N(AYS @. Soln that minimzes

NAR-BII 2

vnque Soln +o ATAR-ATE 2and AR S proj of b onte clA)

DET: check vol of paralielpiplds + checking invertibirlty

D if wmatrir (S +eiangular: det = product of olfagonal elrs

FinoInG A Gooo Basis

x:=evec
£ AR=2F Ffor Rto, Azevar °F A

i A WasS bas'sS of vecs Ri:::, % Wl @ualIS Ai.., A D AX = XA

Ao
x:(i‘.---:?.),./\.:(o"x.. D AzxAx—, Az x'Ax

m2akes it easy to take powers: AF = XAR X' & Markov chains

@At : X e My~ «oliff. eqs
CHANGE oF BASS:

new input V(T --. Tn)
new output Wz (... Wen)

New matrix s WI'AV, Vowsx = Xx"'(xaAx-')X = A
e.vecs

When can ue Find 2 goool basis?

colistinct evals & AzXAXx"'
SeScHal  orineg.
s Symm. ma+r — A= Qano’
svo orthoq
* 2Ny mxn mtrix — ATUZVT
uUSeFul For rawnk approx.
Eckart- Young, PCA od:reckion &,

s



Ex:

1210

how +o Compute:

Az UZVT diagonalize ATA = V(ZTZIVT, UZ=Av

- 3-a -1t
A:(. .) -1 3-,\'=(3-A\"-l=°=>.=z.q

3 -1 -1 =1 o '"WT
ATA= (_l 3 ATA-4T = (.. -,) 2 s (-llﬁ , onz2

ATA-2T = (-l -) 2 va:s ("I’g ) o=Jz

& emad= (M H)0R) - £ [YE) - (FF)

b
&
PCA: A= (R ... a?.g) AzOZVT
E .3
x AATe R?*2 AAT= uZvT(UZVT)T
X
X x

Ail=8 zuzvTvzuT=L(zzTIUT

how many Soins does A%=B have? 0, 1. ©° many
b&clar=s0
/ulA\=$_53 -
becta) ——n(AV£$3] oo
least sq: 3% s.4. A¥:=b & b & C(A)

Eind R min lAR-BTN2? ;g exactly given by AR = projea,b

A%:= A(ATAY'AT B

0 . -
( ) =) wtar=§33 AAR=ATL o= lal nen
- T
;% A:VZv
x
cA=z UleZ)VT cr0 s AAT

(A (cATY= U(c2 T ETIUT

%
% X.§ev is aR+b3ev
-
ez
- =
€  cwange of basis 18,83 210, a3
%
x= (x;):x.é.+ xz€,
Aemhnn

R™ ge...:em3 A

QX=BV.+2G

R" §&....6n

#=[e%7(5)

leO &~

+hink 2bout Same transform wi
input: V= (V- Tn)

outpur: Wz (- WOm)

A=XAX"' — x™"Ax=x"'(xAX")X=A
X F
Xz (®-..Xn) AzUZVT UTAvV: uT(uzvT)v =
*v'zv, ‘w”s v
(vew=x)

(3. \7‘:)(:;) =%

7



