

9/10 · period (sec): $\frac{1}{f}$

· freq (Hz): $\frac{1}{\text{period}}$

FUND FREQ: freq. of which harmonics are all int. multiples

ex: 880, 660 \rightarrow 220

· sawtooth wave: has every harmonic: $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$

· square wave: odd n's where $1, \frac{1}{3}, \frac{1}{5}, \dots, \frac{1}{n}$ (even amplitudes = 0) $[1, 0, \frac{1}{3}, 0]$

· triangle wave: odd n's where $1, \frac{1}{3^2}, \frac{1}{5^2}, \dots, \frac{1}{n^2}$

· phantom fundamental: take low freq & odd harmonics to make it seem like the freq. (fund. doesn't have to be present for us to perceive the sound)

Ex: $[1, 0, \frac{1}{3}, 0, \frac{1}{4}]$

↓
1st harm . . .

→ in practice we don't generate a full freq b/c human hearing is 20-20k Hz

· octave: double the most recent freq 220, 440, 880, etc.

continuous energy {

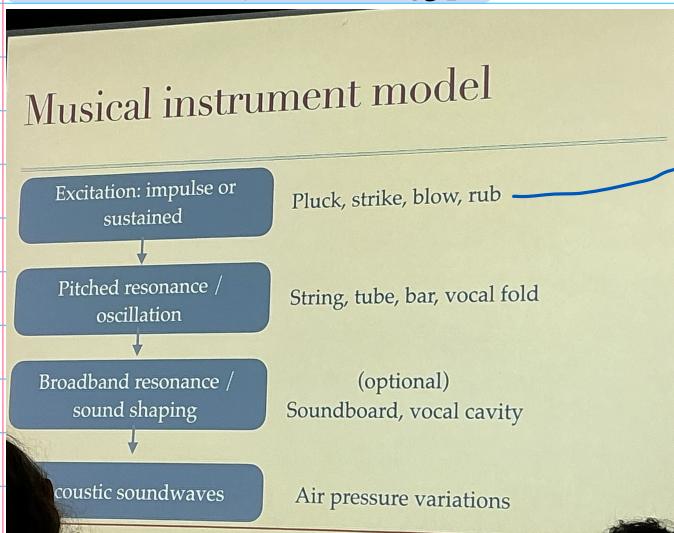
· white noise: energy distributed evenly across freq. spectrum

· pink noise: less high-frequency energy, more low-freq

· impulse: instantaneously short sound distributed across freq. spectrum (plucking, striking)

· piano, guitar, string instruments doesn't have much surface area, so doesn't distribute much air.

- energy of string is transferred to the soundboard.

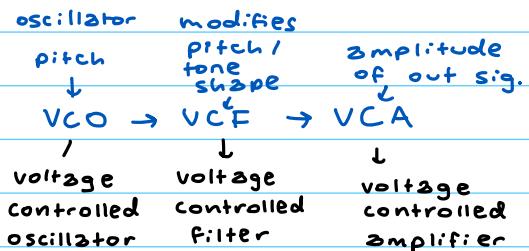
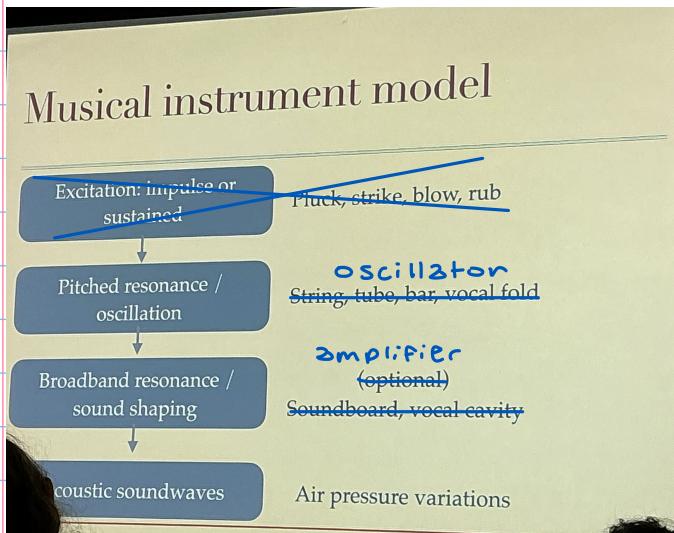

· resonance: vibrate more freely (harmonics)

· freq. spectrum: what frequencies are present in a sound

· freq. response: which sounds will resonate (harmonics) vs. damped out

- if you keep putting energy in @ resonant freq. faster than it can damp, can break things

MUSICAL INSTRUMENT MODEL:

quality of impulse can affect output of sound

9/15: ADDITIVE SYNTHESIS

- creating sound by combining sine waves w/ different amplitudes / freq / phases
- complicated, hard to do irl (sine waves hard to generate)

SUBTRACTIVE SYNTHESIS:

VCO [Sawtooth: nasally

Square wave: deeper,

VCF: getting rid of higher frequency harmonics

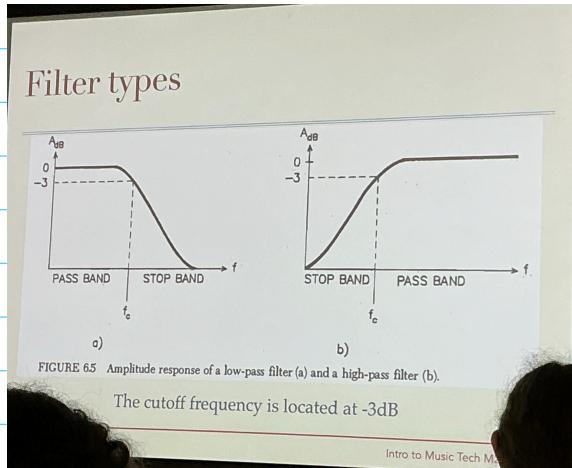
- low pass filter (allows low freq. to pass & attenuates higher freqs)
- attenuate frequencies GRADUALLY

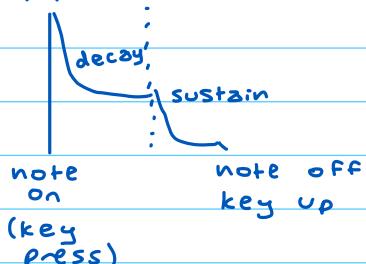
RESONANCE: makes frequency ring out

- high resonance makes higher freqs louder

FILTER TYPES: messes w/ attenuation & how fast sound dims

- cutoff freq = where attenuation begins




FIGURE 6.5 Amplitude response of a low-pass filter (a) and a high-pass filter (b).

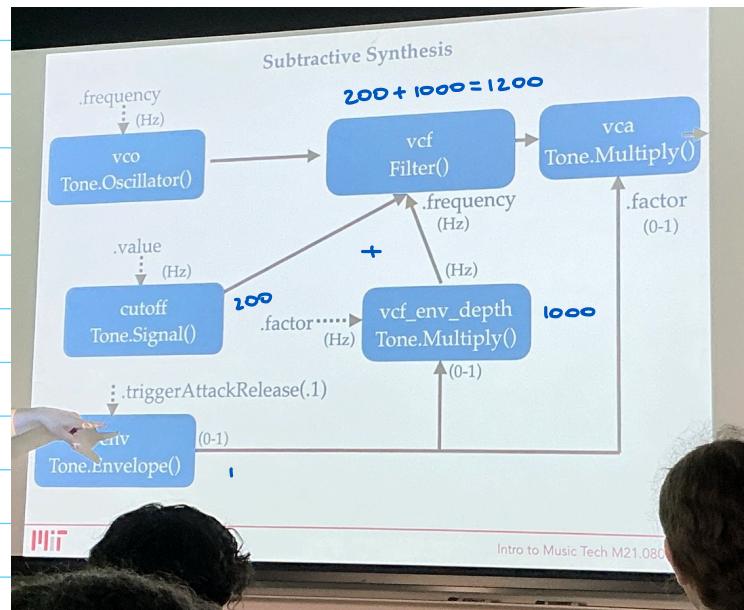
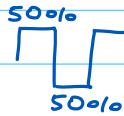
The cutoff frequency is located at -3dB

Intro to Music Tech M21.050

- Analog to digital depends on filters

impulse

ADSR: attack, decay, sustain, release



- Sometimes release not instant

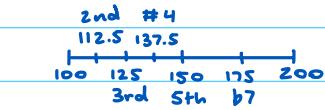
- damping, sustain

DUTY CYCLE:

- pulse-width modulation:

- can speed up/slow

9/17


harmonic series

2:1 octave

100 R
200 8 (oct)

3:2 fifth

300 5th

2nd #4

112.5 137.5

100 125 150 175 200

4:3 fourth

3rd 5th b7

100 125 150 175 200

5:4 third

100 125 150 175 200

112.5 137.5

100 125 150 175 200

6:5 minor third

100 125 150 175 200

112.5 137.5

100 125 150 175 200

7:6 seventh

100 125 150 175 200

112.5 137.5

100 125 150 175 200

8:7

100 125 150 175 200

9:8 second

100 125 150 175 200

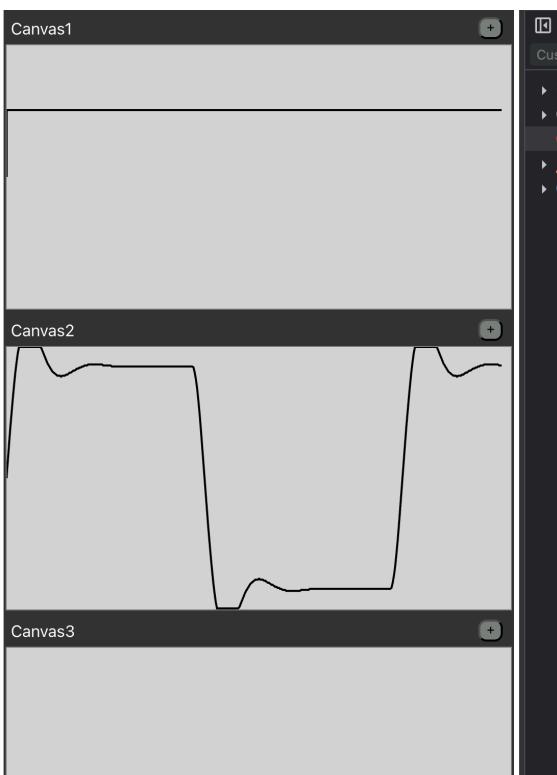
as you go up, intervals keep shrinking,

octaves get larger

FOURIER TRANSFORM:

takes signal & breaks into frequency components within signal

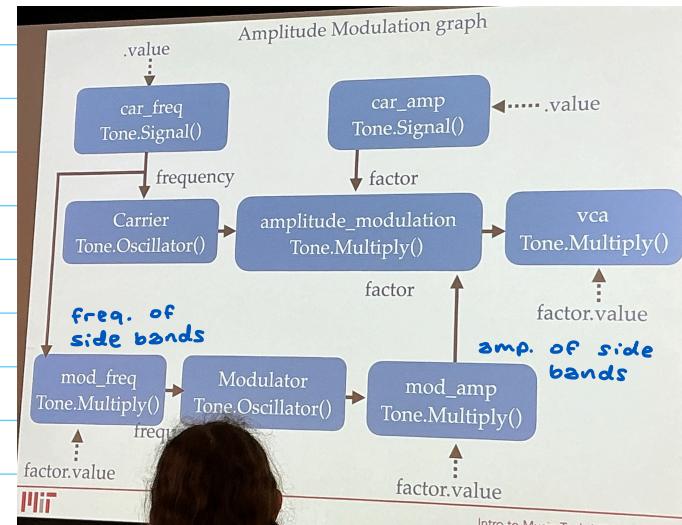
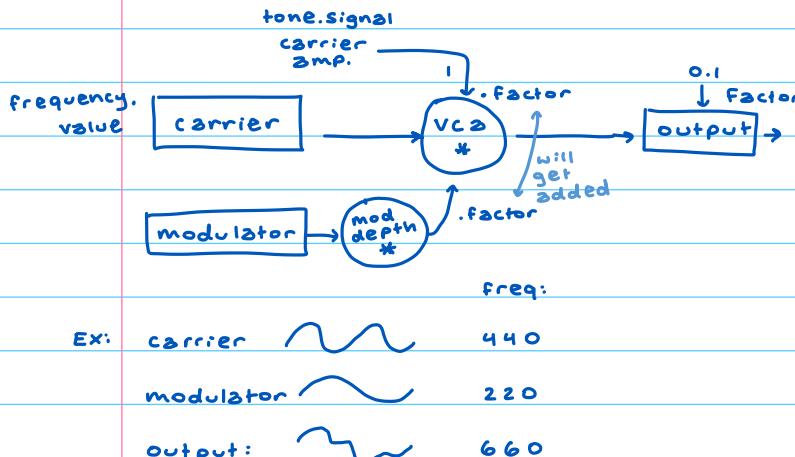
RMS (root mean square) = $\sqrt{\sum_{n=1}^N S_n^2}$



→ avg. amplitude of signal

```

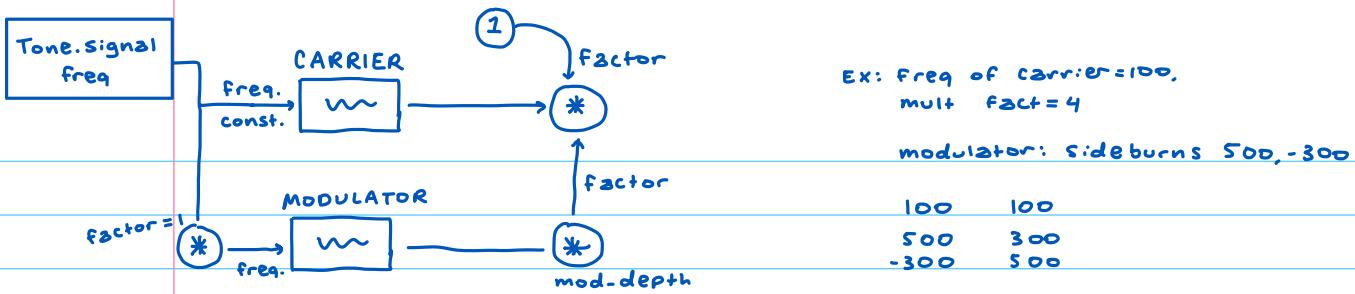
Run  Keyboard  Starter Code  Export Code  +
1 /* */
2 Alt(option)-Enter: Evaluate Line
3 Alt(option)-Shift-Enter: Evaluate Block
4 */
5 let vco = new Tone.Oscillator().start() //
6 let output = new Tone.Multiply(.1).toDestination()
7 let vcf = new Tone.Filter()
8 let vca = new Tone.Multiply()
9 let env = new Tone.Envelope()



10
11 vco.connect(vcf)
12 vcf.connect(vca)
13 vca.connect(output)
14 env.connect(vca.factor)
15
16 env.triggerAttackRelease(3)
17
18 env.attack = 1 // need this val for no pop
19 env.decay = 1
20 env.sustain = 0.1 // amplitude 0-1
21 env.release = 0.1
22
23 vco.frequency.value = 150
24 vco.type = 'square'
25 vcf.frequency.value = 1000
26
27 let scope1 = new Oscilloscope('Canvas1')
28 env.connect(scope1.input)
29 let scope2 = new Oscilloscope('Canvas2')
30 vcf.connect(scope2.input)
  
```


- produced by Moog music in 1970s; cheaper than Mini Moog
- monophonic subtractive synthesizer (only 1 VCO)
- subtractive synth: starts w/ rich waveforms from VCO & uses filters/modulators
- additional sources: noise generator (white noise), external audio input
- octave, frequency, doubling, fine-tune frequency controls
32' to 2' transpose up/down octaves controls all octaves simultaneously
- cutoff control - sets cutoff frequency where attenuation begins
- modulation: changes params. of sound over time.
 - modulation wheel: controls degree of modulation
- self-oscillation: can make a sine wave → "filter mode" switch to tone
- timbre: 24dB steep filter, higher cutoff = brighter
 - sub-octave generator: adding octaves

ANALOG:

- hard to have another oscillator & keep it in tune
- Sub-oscillator: play sound 1-2 octaves below main oscillator


going negative: takes waveform & flips:

\sim neg = \sim

modulation depth: central vs sidebands

Amplitude mod.
AM & RING modulation:

- amount of mod. relates to amplitude of modulator
- ring modulation: carrier disappears, only sidebands stay

- what if carrier has many frequencies (sawtooth)?

→ every frequency gets its own set of sidebands.

MIDI: musical instrument digital interface; 1980 tech.

- sharing info b/w hardware music devices
 - adopted for lighting / etc.
- keyboard press: frequency, amplitude
- middle C: midi note 60, 261.63 Hz
 - up an octave: +12 → 72

MIDI message format:

- each msg - multiple bits
- status bytes: always start w/ 1

1	ssssnnnn	0	xxxxxx	xxxx	0	yy	yy	yy
	status byte		pitch data 1			velocity/amplitude		data 2
- w/o top bit, goes from 256 → 128 values; ok b/c piano has < 128 notes, & this value is pretty good for speed.
 - criticisms that midi is only 128 resolution
- note on message (note, format) → depends when you press/release
- speed of pressing keys determines sound (velocity)
 - can specify note off by sending note on w/ velocity = 0
- can set synthesizers to different channels.
- wire: DIN-5 standard

- in, out, thru msg (goes thru to output)

CC (CONTINUOUS CONTROL) messages:

- status byte will be diff. Data 1 = value, Data 2 =
- pitch bend / modulation - types of CC
 - can change pitch w/ +/- octave - coarse on 128
 - 14 bits of res. - both data bits are for pitch bend

GENERAL MIDI

- 1st way of writing song/sending music around.
- sending MIDI files than music lib.
- has many sound presets - 128 presets
- drums usually on MIDI channel 10.

PROBLEMS w/ MIDI:

- low res (7 bit)
- not human readable
 - MIDI data is hex, not binary
- note on/off doesn't easily translate to continuous pitch/microtonal music
- limited support for lots of continuous data
- generally not that extensible

MIDI UPDATES

MPE:

- every note has its own pitch bend
- 3 dedicated channels for 14-bit cc data
- continuous frequency sweep, not step bend
- move finger side to side for vibrato, up/down for pitch bends.

MIDI 2.0:

- 32 bit

OSC (open sound control):

- no data restriction
- sending packets - transparent, human readable
- EX: /synth/1/frequency 220.

ROLAND - JUNO synth

- released in 1982
- unique features: arpeggio, chorus, memory (patches),
presets of them you can quickplay
could go out of tune depending on environment
- uses DCO, not VCO. VCO charges/discharges capacitors. DCO uses digital clock, more accurate
- can mix multiple waveforms @ once, playing up to 6 notes @ same time
- change timbre: HPF/VCF, bender, LFO trigger,
- classic 80's sound
- easy to play

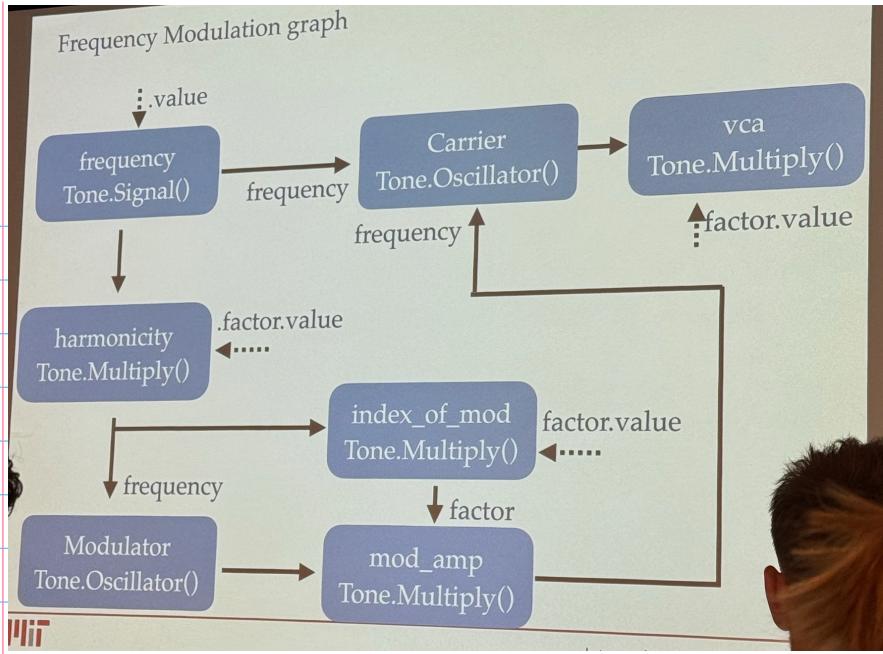
10/1: LINNDRUM SYNTH

- need for drum machines
- 1st programmable drum machine to use digital samples of real drums
- focus on rhythm backbone
 - many buttons (pre-recorded sounds)
 - many diff. outputs
- not rly a synthesizer... plays digital samples stored on EPROMs
 - can swap out EPROMs to change sounds
 - variable sample rate
- every drum: can adjust balance / volume
- panning sound for LinnDrum → L/R
- used VCO to change speed of recording / tuning
- hi-hat decay → open/closed crip sound (long vs. short decay)
- multiplexing: have different sounds "take turns" using same DAC.
- Curtis Electromusic
- can use cassettes to save
- used by: Prince, Madonna, Paul McCartney, Michael Jackson, Queen

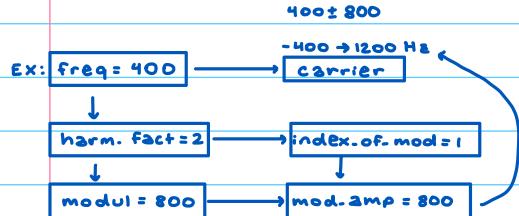
10/6 FM SYNTHESIS

- ADDITIVE SYNTHESIS: adding many sine waves together
- AM SYNTHESIS: oscillators are called carriers & modulators
 - modulator affects carriers
- FM: affects frequency

FM:


- carrier = main central freq.
- modulator comes in & modulates around that
- Ex: freq val = 500, mod = 100, amp mod = 400 & 600, 300 & 700, 200 & 900, etc.
- freq. range > mod range → must shift mod amp
- amp mod: 1 pair of sidebands
- freq mod: many sidebands

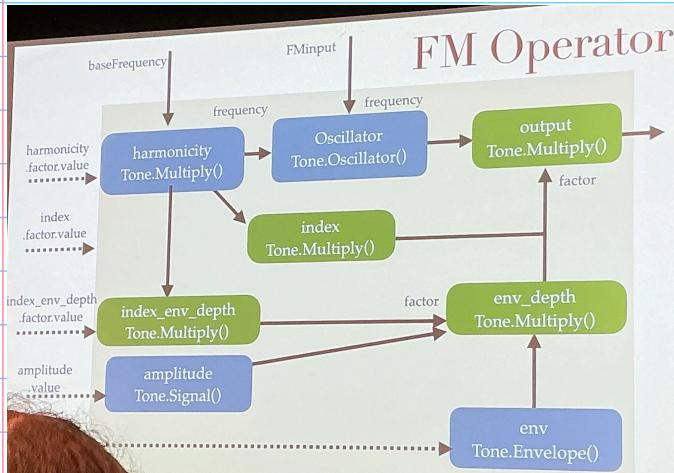
make freq mod = 500 → everything is harmonics


- relationship b/t freq mod & mod-amp controlling # sidebands

Ex: freq.val = 100, mod.freq.val = 1000, mod.amp.factor.val = 1500

- FM synthesis tends to sound metallic, bright, etc.

- harmonicity & index_of_mod multiplies carrier freq.
- mod_amp is also factor
- harmonicity determines freq. of modulator
 - sidebands = carrier freq \pm mod_amp


- high freq: fundamental freq. is almost lowest amp.
- timbre = bright, have ghost freq.

- can change wave types, but can get insane amt of sidebands b/c multiples will be generated

for each freq.

$$I = \frac{D}{F_m}$$

D = amplitude of modulator
 F_m = freq. of modulator

YAMAHA DX7

- PPL still release synths based on it

SAMPLING:

- sample and hold in ADCs
- single note recordings
- music performance
- dj-esque (parts of songs)

AUDIO BUFFERS:

- store audio recordings in computer memory
- play back @ original speed/freq.

SAMPLERS:

- key mapping: mapping playback speed ratio
- multisampling: recording many different samples of same instrum.
- timbre of instruments change @ diff. amp. levels
 - velocity switching: record each note @ diff. dynamics
- keyswitching: using selected keys to switch articulations
- professional sample libraries are expensive
 - free: philharmonia.co.uk

10/15 DIGITAL AUDIO AMPLITUDE:

- env: 0 → 1

- voltage: -1 → 1

- same harmonics, diff. amplitude

- if amplifying beyond limits, will chop off

AKA distortion

- ex: distortion amplified to max:

even when you play soft, will clip.

digital:

hard clip

analog:

soft clip (tried)

DISTORTION: arbitrary alteration of a waveshape

- if sound has pitch, fundamental + harmonics is there
- harmonic distortion: adds harmonics (change shape of waveform)
- adds higher harmonics within limit

WAVESHAPING:

- as soon as we hard clip, many harmonics are introduced
- soft clipping: tanh func
- can use many shapes (sine, triangle). sine a bit softer
- wave folder:

PHYSICAL MODELLING:

- model behavior of physical elts (plucking, etc)

KARPLUS STRONG ALG:

- simulates pluck string
- delay line to model movement

10/20 SOUND: DIGITAL PERSPECTIVE

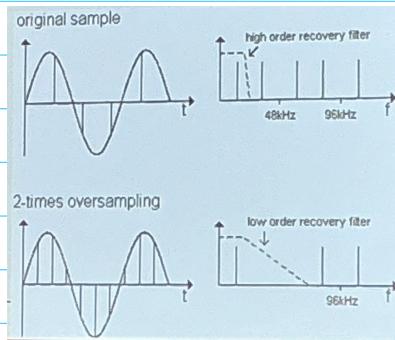
- decibels: how we measure amplitude (dB) - logarithmic
 - 6dB: $\sqrt{2}$ doubling of amplitude (measurable) \rightarrow for each 6dB there is doubling of amplitude
 - Ex: 12 dB \rightarrow quadrupled, 18 dB: 2^3 , 24 dB: $2^4 = 16x$
 - dB SPL (sound pressure level): compared to threshold of perception of 1 kHz soundwave
 - 0 dB SPL = quietest sound ppl heard in lab
 - our classroom ≈ 35 dB (soft whisper)
 - will always be + level
 - dBu (professional standard)
 - dBV (consumer standards)
- dBFS: negative. is below max noise

CONTINUOUS VS. DISCRETE SIGNALS:

- digital systems manipulate discrete, quantized signals
- time-sampling
- SAMPLING THM: continuous time signal $x(t)$ with frequencies no higher than f_{max}
 - can be reconstructed exactly from its samples $x[n] = x(nT_s)$
 - if sampling rate is at least $2 \times$ highest freq. in signal.
 - have to band limit signal (don't exceed f_{max}) $\rightarrow f_{max} \leq \frac{f_s}{2}$
 - not \rightarrow Nyquist freq.

SAMPLING RATE: rate audio samples must be converted by ADC \rightarrow DAC w/ high precision

- jitter: variations in timing of ADC or DAC (distorts waveform)
 - everything nowadays has ADC & DAC in it
 - higher samp. r. = worse jitter
- if you can't process @ sample rate fast enough, dropouts will occur (pops/clicks)

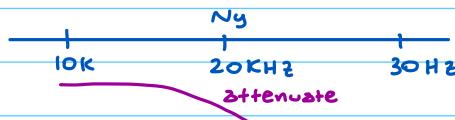



ALIASING (Foldover): what happens when going over Nyquist freq.

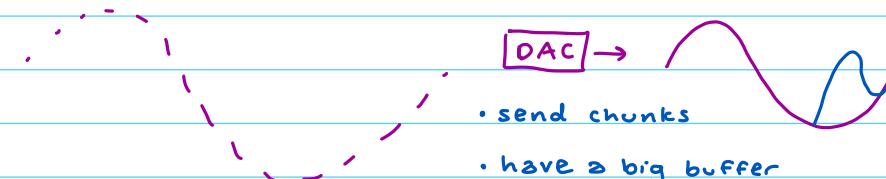
- intro. of frequencies not present within source audio
- sampling rate of 40 kHz, Nyquist of 20 kHz \rightarrow 21 kHz generates aliased freq. of 19 kHz
- $25\text{ kHz} \rightarrow 15\text{ kHz}$ $35\text{ kHz} \rightarrow 5\text{ kHz}$

FILTERING: $\frac{\text{dB}}{\text{octave}}$

- steeper slope = steeper dropout - fast attenuation
- analog filtering easier \rightarrow do it before converting to digital

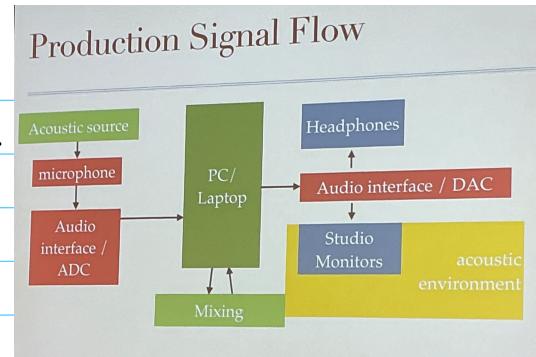

OVERSAMPLING:

- steeper digital filters after conversion to bring sampling rate down
- most ADC / DACs use this


taken care of for us in the hardware stage

AMPLITUDE QUANTIZATION:

- converts continuous amplitude of sample into digital sample
- bit resolution = # bits used to store amplitude
- higher bit depth = better quality
- 16 bits \rightarrow 65,536 possible representations
- max error = $\frac{1}{2^{\text{bit depth}}}$
- low bit depths / 2mp. signals becomes square wave (a bit = on/off)
- less word size (bits) \rightarrow makes sounds more distorted


24 input, Ny = 20, out = 16

10/22

MUSIC PRODUCTION

- many goals directed by personal choices
 - simulate live music, no correct way
 - gear can be important
- maintain fidelity
- develop our ear!
- MONITORING: listening to results of actions/decisions
 - accurate monitoring is important!

CRITICAL LISTENING:

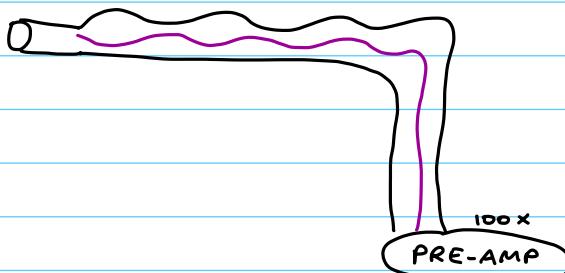
- equidistant from speakers - aimed directly towards ears

10/27 MICROPHONES: dynamic

transducer {

- diaphragm (body) \rightarrow vibrations (air pressure variations) cause signal
 - thing that moves; super sensitive
- coil of wire connected to mic induces current (E-field)
- pretty robust, so a little less sensitive

*performers generally louder


CONDENSER mics:

during performance vs. soundcheck.

- condenser is british for capacitor
- capacitance changes based on distance (diaphragm)
- nothing connected to diaphragm
- preferred; crisper

RODEO WRAP ("over-under")

- lies down flat
- better for wires (no tension)

HIGHPASS FILTER:

- cutoff freq of 100 Hz
- attenuation of low freqs.

AUX SEND:


- has reverb setting
- effects on your voice
- reverb is historically expensive - each track can have reverb
- post fader send & pre-fader send
- common use: concert band doesn't need drums, but audience does

RECORDING:

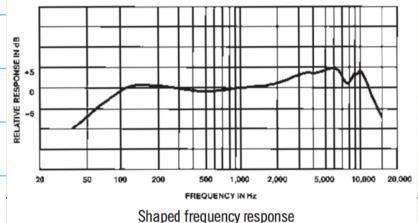
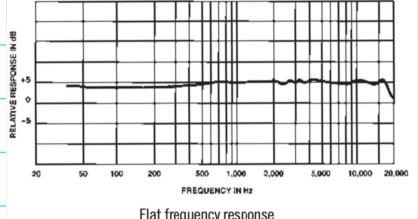
- 1) musicianship
- 2) good sounding instrument
- 3) good sounding room
- 4) mic positioning
- 5) mic choice
- 6) pre-amp gain

10/29 IN REAPER:

- 48 kHz sampling rate
- Nyquist freq of 24 kHz
- can't have a freq. > 24 kHz
- samples capture amplitudes
- 24 bit resolution
- WAV = uncompressed audio file

MICROPHONE:

- GAIN: controls sensitivity (amplifies mic signal)
- TRANSDUCER: device changes energy from one form into another (mic)
 - diaphragm + transducer = capsule
 - mic: air pressure variations \rightarrow electric signals
 - hydrophone: water pressure variations \rightarrow electric signals



MIC POLARITY PATTERNS:

- **UNIDIRECTIONAL:** mostly sounds in front of mic (good for avoiding feedback, musician)
- **OMNIDIRECTIONAL:** pick up sound equally in all directions
- **BI-DIRECTIONAL:** sounds in front & back of mic
- **CARDIOID:** sounds in front of mic (unidirectional)

- **PROXIMITY EFFECT:** sound sources move close to cardioid & produce artificial low-end boost
happens w/ unidirectional mics.

FREQ. RESPONSE: mics will be more/less sensitive @ various frequencies

- ex: mics more sensitive b/t 2-8 kHz (consonants, high freqs) → called **presence**

DYNAMIC MIC: passive

- ex: Shure SM58
- voice coil w/ conductive material connected to diaphragm
- inexpensive, rugged
- often used as stage mics

CONDENSER MICS: needs charge (phantom power)

- ex: Neumann U87
- diaphragm electrically charged & mounted parallel to metallic backplate
- moving diaphragm changes dist. b/t disp. & backp. electric signal proportional to dist.
- condenser = old word for capacitor
- large diaphragm: highly colored, essential for vocals
- small diaphragm: "pencil mic", less colored (neutral), better for capturing multiple inst. (drum kit,..)

CHARACTERISTIC	OMNI-DIRECTIONAL	CARDIOID	SUPER-CARDIOID	HYPER-CARDIOID	BI-DIRECTIONAL
POLAR RESPONSE PATTERN					
COVERAGE ANGLE	360°	131°	115°	105°	90°
ANGLE OF MAXIMUM REJECTION (null angle)	—	180°	126°	110°	90°
REAR REJECTION (relative to front)	0	25 dB	12 dB	6 dB	0
AMBIENT SOUND SENSITIVITY (relative to omni)	100%	33%	27%	25%	33%
DISTANCE FACTOR (relative to omni)	1	1.7	1.9	2	1.7

PHANTOM POWER:

- typically 48V
- sound is AC signal, power is DC, can provide power & have sound riding on top.
- turn on @ pre-amp.

PIEZo Mics

- structure of crystal generates V when deformed
- frequently used as contact mics (pick up vibrations travelling through solid objects)
- apply charge → deforms.
- Ex: guitar plugged into amp → piezo inside guitar pick up sound
- easy, but not good sound

RIBBON MIC:

- one of earliest bidirectional mic designs
- moving conductiveelt = corrugated ribbon of metal (diaphragm)
- extremely thin

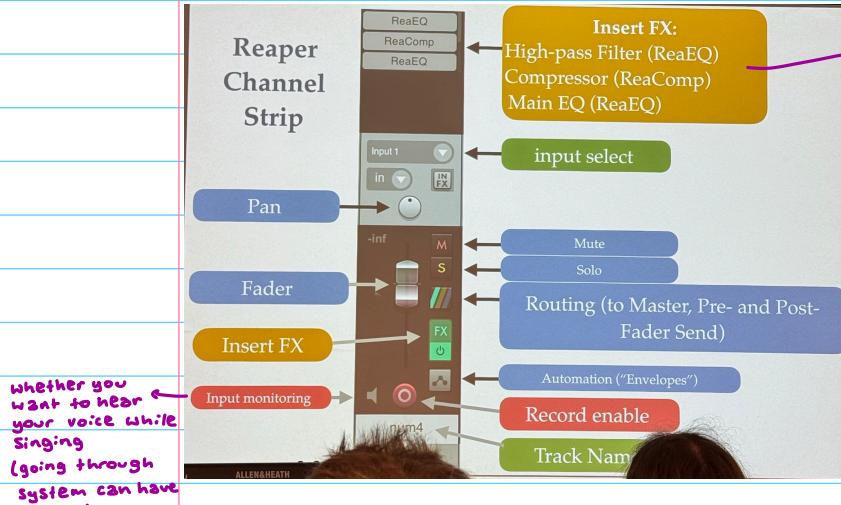
Mic comparisons

	Dynamic	Condensor	Piezo	Ribbon
Price	Low	High	Very low	High
Sensitivity	Good	Excellent	Low	Varies
Durability	Excellent	Medium	???	Low*
Phantom power	No	Required	No	No
Tolerance to high SPL	Excellent	Med/Good	Variable	No

Mic placement tips

- Your recording is only as good as the acoustic instrument
 - make sure it is in tune, sounds good, is played well
- Use a good acoustic environment: minimal background noise, HVAC
- match frequency response of mic to instrument
 - shaped sound for vocals and bright instruments
- Put on headphones and listen to the sound of the microphone as you move it around
 - acoustic instruments make many different sounds
 - different mic positions will emphasize certain characteristics
- Mic distance will have a big effect
 - close to improve signal level, also emphasize that sonic perspective
 - back off to get the interaction of instrument and room, potentially more natural

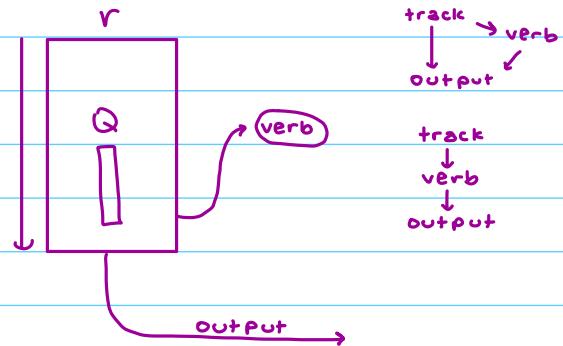
11/13 STEREO RECORDING:


- XY technique
- mid-side recording: uses 2 mics - one directional for mid, and one figure-8 with audio src on side

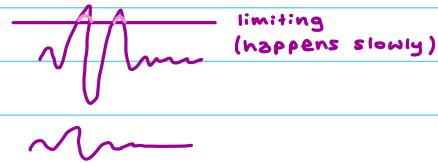
VOLUME UNITS:

- arbitrary unit to visualize loudness

DAW decibels: (full scale) for digital system, where 0 indicates max amplitude before clipping


REAPER:

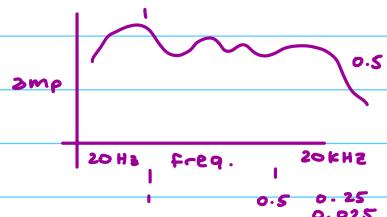
Click Fx in Reaper


- VST: ReEq
- VST: ReaComp
- VST: ReaEq

in order

REVERB: feels more natural

- dry signal: sound before adding reverb
- wet signal: sound after adding reverb



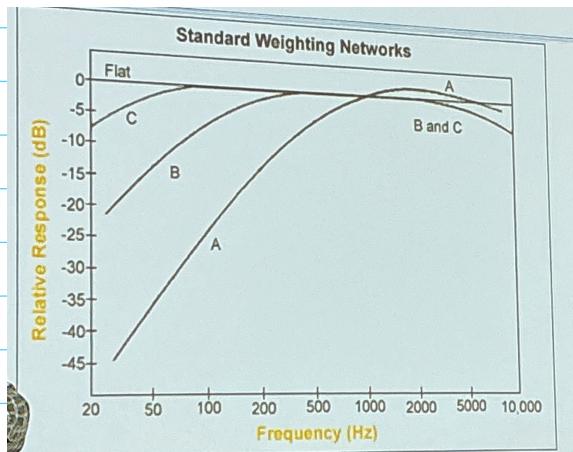
11/12 DELAY:

- short delay usually destructive
- delay-based reverb

CONVOLUTION:

- impulse: brief strike of noise (theoretically ∞ short imp. w/ energy = dist. throughout freq. spec.)
- impulse response: system's reaction to impulse (can also use sine sweep)
- useful when we want to cross synthesize
- often used in reverb, IR guitar pedal (impulse resp.)
- convolution is good way to model guitar amplifier
- modelling guitars, filtering, noise red.

11/17 **MASTERING:**


- prepping track to be distributed (optimize)
- classic problems w/ vinyl: too much bass → causes needle to skip.
has weird freq. curve

LOUDNESS WARS:

- louder sounds have diff freq. resp.
- overcompressing music loses dynamic transients
- listener controls final volume, not producer

LOUDNESS UNITS (LUFs)

- make up for dB RMS weaknesses
 - monitors amp, freq. weighting, measurement techniques
- goal: objective measurement of how loud track is

*most use A weighting (standard)

C is for measuring super loud things

GOALS OF MASTERING:

- make sure track sounds good on all systems
- matching commercial loudness levels
- sequencing & balancing an album
- last chance to sculpt sound of your track

Critical Listening:

- correct setup
- ~85 dB (not too loud, but overcoming loudness curve)

MASTERING CHAIN

- compression (optional)
- EQ
- multiband compression (optional)
- limiter

LOSSLESS COMPRESSION: reduces file sizes while allowing for perfect reconstruction of

original size

- LOSSY: losing info (mp3/aac)

12/1 HEAD MASKING:

- higher freq: tends to get into head
- lower freq: tends to not reach ears

12/3: AI IN MARKOV CHAINS:

- MARKOV CHAIN: predicts what comes next based on what just happened

USING AI / STYLES:

- timbre transfer
- vocaloid (Hatsune Miku)