qlul28  ALGORITHM: (mecwanized)

I: correctness on every poessible input

2: efficiency (metrics: +ime, memory, )

2symptotic, O(n), hidden constants
3: oprimadlity

ADOING INTEGERS: e ints x & 4, compuie x +y
Y +imes
e
préescwool: X+ L+ + ... 10

Rx: =3 3123 (wn 8 #digits is exponential)
o(io™)
123
grade-scnoel: ‘=22 2dding 3 digits n times
I need 2w digits 2: 0(n)
(2 n-digit Hs)

2 9 n+l digit # dn ouvtput

MULTIPLICATION): %X # Yy
123

x 4uS6 Singie dig. mult. X; k4; for Vi.) (moltiplies each pair)

D

> O(n) is possible (re2ad / write)

B(n2) moltipies

iS it optimmal??

DiIviOE & CoMQuER (assume n=even) Ex:

X=1234 Sawme For Y
moultiply (x,4) (no Floors/ceil) Xni =12
(PR 1) »
Ply ) e ‘ 5
: s = .. niz . 2
@ base case: n=1 lower order (R) Xy = (%Xn;-10 + %16) (Yn:-10 + Yie)

-1 -
recuvrsSion: x,.: .o‘g. & oo ‘o“lz x“‘z.' - (xV\: xl°) |°m -+ (xh:jte"' XIejh.') |°“'z
highev oveer (18F4) Xuiz 10%uy - + 1072

* “h3|.
Kn=)
wni2 diqs —
Az moul (Xie, Yi0) 8AsSIC Ofs:
e " ‘(x ‘ p "'v -0*' Sht"-'i'
s Mo . K "
2. 9w ouk: A ¥ |0 z(e.q-c_) e ‘o"o
€= mol [xw;, Yie)
0z mul (X, yu:)
—ndiqits
T(n): H basic ops For multipiy (x.4)
T = Hr(n2) +Cin @
RECURRENCE SOLN: Mmasiers thm — 8(w2)

KARATSUBA: Ist math 21q0. beter than B(nx) k<2



Master theorem: Let 7" be a recurrence of the form 7'(n) = aT'(n/b) + g(n).

Case 1: If g(n) = O(n'2(9=<) for some constant € > 0, then T'(n) = ©(n'o&(4),

Case 2: If g(n) = ©(n'°%(@) log"(n)) for some constant k > 0, then T'(n) = O(n'%(® log"™ (n))
Case 3: If g(n) = Q(n'°#(®+¢) for some constant € > 0 and ag(n/b) < cg(n) for some constant
¢ < 1 and sufficiently large n, then 7'(n) = ©(g(n)).

KARATSUBA:
A = moltiply (X0, Yio) @
8= (%10, Yn:) owniy getting needed vals
(3 moults ins+e2d of d) —don'+ need B8 8¢

E = moultiply (Xce + Xni, Yo+ Sh:) sepera+te 13
8+C=E-A-D P A+ (B+c)10™2 + 10" D
T(n)=3T(n12) +Can & 2pPPly master Fuwm T (%ni +%16)(Yni+ Y0) = A+84C+D

e(v\!os,}) logq,2 n1.S8 B+Cz(xni +x10)(Yni+ Yo) -A-D

3 multiplications, each on size "2
HicH Precision Division:
‘requires wmany bits

- need large inteqer multiplicdtion

CORRECTNESS: right 2awnswer ov U inputs

EEFICIENCY: if i+ wakes |e2Si/Small use of resources (time, Space,---)
WORST CASE ANALYSIS:

¢« T(n)=number of Joperations” Blgorithm +akes on worst input

* Asympiotics +to Sumwmarize Tl“\"’g-g-((?(:\\)):r:r::] 8 ()
DefF: Bio6-0

O(F(») | 21gorithm A nas (worst-case) runtime O(F(n)) if 3 consiants ¢, Mo >0 S.t on an

inputs of length N?Ne i} holds worst case rovntime of A <c-f(w)

=

LL(F(m)) | 21g0vithm A has (worst-case) runtime N(F(nY) if 3 ¢, no>»0O S.E.

AN input for 2l ni>Ve S.t. A takes time 2 c-f(nY own that input

@ [ CAveAT: 2lg A Tl e2'°°" cne Otn) 2Symptotically: O(n) bezts O(nz)
2lg B8 T(n)e wn? e O(wn?) praciically; Consiznks matter. for WE2500,
O(n2) 21q. might be Faster,
ProerAM | 2lgorithw
C/C++ [RuUST ———| psevdo code /englishh pose

ASSEMBLY (x86/ RiscV) |— base opS

CoOMPUTER — model 2s computation




WORD- RAM MODEL:
ink math: #, %, 7/, o/e

- mewm logic: 2w, of.-. REGISTERS MCﬂRAM .t 25
bitwise: 8, 1. » Mmoo f Chan
- registers load: R[j) &€ MmIRCi)]) : \ binary
Storc: mC RLIDJ € RC{I olr) :
brancl,
- processor Walf
w bit+s
(word size) ~— {O(losn)
w bits
EXECULUTION) O©ON WorRrp -RAA:

DY Programs input St3rts ouk in memwm locations Mmefe,... MLn-17]

Correct answer

2) processor Steps -I-hro-ush a\g vn¥l HALT Question 4
3) ovlpuvt must be in First 17 rmem. locations

2> addresses =2 wn input size input 1evnn v,

d e =0o(
w 2 |OSzV\ e mord wor w oW (asv\\

w 22 |°31V‘ 2 n? mem. loecs.

*use Pythonic model instead & onder Hie hood is word Ram

Common python objects & running times:

TNTEGER X+Y Schoolbook  O(ix1+1ul)
<y carstsuba  olixte1std™ ) o tim=2T(2) 4 00
LisT L. append (x) > « 0 (,.,,'°s==)
len(c) o()

Peaxk FinoinG

INPUT: 2 list "A” of «w  integqers index S “‘peak’” of A

OuTPUT: 2 “peak" of Its+ A i€ AC'j iS a+ (east &as |3t‘se DS V\e:jl’\-
(1.23.4,27
13 AN

ALG For PeaAak Finoine: Croraten, 13

*find-peak(A):

nzienl(AY /7 ©() rons in worsi-case time linearly
for izo,...,n-1: [ ©(n) O(n) wovst+ c2se
if i is peak return |/ B()

STeEPs To SucceSS in  algs:
1) write alg. in Ensl.-sv. prose
G psevdocode if necessavy
2) prove 2alg. S cCorrect own 2l inputs

3) anaiyze ronning +imme



Divice 3 Com@uUER ALe (more efficient peak £ind:ing)

[ 2
A [TTTTel=l«lTT] find. peak (A):
n=1en(A)
vl v N\ e\ if n==1: retorn O
[L3he[n]al2TN AN = iz
e divide by 2 if AL}l peak: return |
b ivi 9 ) |
AL i-1): : -pe2ak (A[:31
T(n) £ 00)+ T(T127) iF AL3T<¢AL1]: retorn Find-pP (AC:31)
else: return Cind-PeagLA[:‘_‘.l:j)
3 O(!ogvﬂ

A/11125 | SEQUENCES + AMORITIZATION
DATA STRUCTURES
2 COMPONENTS:
-interface (2pi, 2d+)
.implementation
STACK: LIFO 2ccess pattern
- push(x): Stores x own “top’ of stack
- pop: remove 8 output ‘top” of Sitack constant +ime!!
interface
- peek: re+urn ‘top” of stack wlo rewmoving

- is empiy: check if empiy

AP, ] A Y LA Y )
o, b, e b ]
LINKEO LIST:
‘op
thead”
LL: N -pointer-based od2a+ta siructure
\“' ~t
\c'

‘al, ‘B!, te! ol 4
top
tnead” ] Cons+ant +ime
. . \ 4
posh(ta?) NS
\c'
‘O', \b:' [ )
c wl
+op "
Shead" - f ConSiant {'we
R = o Ny e
!
ARRAN: Le e ] tar]ar] STAck:
b t{-ep of ‘;
bot*om Stack b
of stack c
TOoP < 4
poel) |“' I \b'l ‘“'I‘X|

% problem: £ixed-len arrayS. we need +o reallocate
ToP _—

Push(‘e') |‘c. I \b,l ‘o‘:l‘e.l

2 new 2rray & will +2ke O(n) time

HowEVER, if we cCopy into much 12-g€r 2array,
can do wmany operations



@ AmoerrTizATION:

‘charqge expensive operat’ons to +he cheapeéer ones

Ex: teanolic buy 9 qe+ | Ffree

averaging cos+ over sSequence of operations & bounding

2mortized cost T f any sequénce of m ops has total cost ¢ m.T

4 Tetart from empty data Strouctore
Function of
sta+e of data
Struciure

EX: | Wwhat (S 2mortized cost of 2array if wue make 2dditional N sSlots? = consiant ime

Liogwm]
+total cost of Copy operations: .Z e(2%) —happens whenever you kit 2 power of 2
Llegm] i=l
Sum: wm.BlL) + ,Zm B6(2') = B(m)

cweap: (+o+al cost of m pushes (stariing from ewpiy data struct): m- B 0)

Expensive:
2amortized cost: O(mI/m 5 B(1) amortized (consiani)

* PROBLEM: push many values ihen pop them 2ai, we end vp with 2 massive
empty array (lo+s o€ memorﬂ\
® MemoRrY OverneAaD: 2dditional space used beyond what's 2ctually uvsed +o
Store the daia.
dynamic arrays: linear (N
linked 's+: lineawr

2llowed +o uvse several diff. ops, €ach of whickhh we caw vuse d:fe. T ?

PoTENTIAL: if 3 &...
function

6 (A 20
dat2 /

Struck oPeration +hat takes Ao A, +akes time ¢ t+ P(A) - P(As) € O(Fl1Aas1))
=3 O(f) amortized cost
3rray poieniial fonc:
DLAY: c|n-™i2] n:= # elements in siack
wmz= (3pacity of array
‘potential decrease by Iine2ar amount
EX:| push wlo copy Ol)+B6(y= ©U1) cost

EX: push with copy O(n) - Bln) = (1)
Cos+ potential
difference

h'.sh pot-

é

[x > X X% 1 low Pe+.
]

2vevraqes ov+ +o O(1) ™ =>2wmortized




SEQUENCE: maintains Sequence Xe, Xi, ..., Xun-

Irter-Seal): iterares over sequewnce

Buiwco(AY: build sequence out+ of A & container op

GeET-AT(): output X: \

SeT-AT (i, x): se+ xi=x <5*3“° ee

ju o,V ] - x): H .. X;:= /

. TNSERT (24, first, l2st)

DeLETE (2}, First. \as+)

Operations
Container Static Dynamic

SEQUENCE build get_at | index_of || insert_first 7 insert_last | insert_at

set_at delete_first delete_last | delete_at
Linked List ©(n) - ©(n) | ©O(n) ©(n) O(n) I
Doubly-Linked List ©(n) ©(n) | ©(n) O(n)
Dynamic Array ©(n) O©(n) O(n)
2-End Dynamic Array O(n) ©(n) O(n)

(Am.) = amortized running time

allk Sers (key-valve Maps)
S EX: (38, Henery) E,(Eﬂj. valve)§ pairs
(63, Sr.'m')
(3s. Brynmor) keys are comparable, unique

OPERATIONS:

B (») c build(A)

c leng i O)
e () c find (key) = returns valve associared wi key
e (n) s insert (key, valve) might be 2ble +o do in 2amortized O1)

e () s delere (key)

* find-min ) 3 retorns valve wi lowest key

. Find_ mak()

« find_ nextr(key) o retvrns valuve wl Sm s+ k rqlr 4han

~

-

s Find -previkey)s retrorns valve vl largest key smaller than key

e("‘z) o iter_ord () » eacu fFin ke n, Sso €in H w2 fime

* if we sort array, fime could be 9('93“)




ARRAY:

SORTING:
input: ISt or array, A, of comparable elements
owtput: list or Brray, B, permutation of A +that is sorted.
Vie|A), B[i) ¢ 8[i+1]
PermuTAaTIiONn SorT: L2(w!) >>> 2"
‘ generates permuiations OF elemewuis until  sorted
INSERTION SorT pstable & in place
qgoes through 1 by 1 each element & sSorks into right place

Ex: 86753085

~

I: 875309

~)
2: 67853049

insert_ 1ast (A,i) WORST CASE: every iteration
while i20 awd ALil > ALi+1]: O) N (w) & @ ith position, ALid smaller than
avu_-si-h:ns in preF.’);
swap ALi] with ALi+1] o)
i-- O (1)
insertion. sort (A): B (wn?)
for i in ... lAl: O (wn)
insert_last (A,0) O (wn)

in-place: B0 memory overwead (Mool-‘(-‘g:ns input directly - no exica mem.)

STABLE SoRT: preserves order of equal /tems
in: (2,3), (1,1), (2.4)
ourl: (,1), (2,3), (2.4) & vaud 8 Stable
oot 2: (v, 1), (2.4), (2,3) & 2wother vatid but unsiable ou

1 def merge_sort (A, a
F&egore Xiasbltt

0, b = None):

*

Tib =& =:m)

if b is None: b len (A7) # 0(1)
4 if 1 <b - a: # 0(1)
MERGE SoRT: divide + Conquer ;i c=f{a+b+1) /]2 # o)
6 merge_sort (A, a, c) % Ti(n o2)
merge_sort (A, c, b) ¥ Tin /.2)
: o ° " c [3 8 L, R = Al[a:c], A[c:b] # O(n)
Ex ‘8 6 7| E 3 q. hzs a"ﬂ edae ases 9 merge (L, R, A, len(L), len(R), a, b) # S(n)
1 def merge(L, R, A, i, j, a, b): # S(b - a n)
.6 1 8_, .o 359 2 /7 ’Merge sorted L[:i] and R[:j] into Afa:b]’’’
Merse e(v\) 3 if a < b: # 0(1)
4 if (j <= 0) or (i > 0 and L[i - 1] > R[j - 1]): # O(1)
.o 3 S 67 8 q. 5 Afb - 1] = L[i - 1] # 0(1)
i=i-1 # 0(1)
else: # 0(1)
A[b - 1] = R[J - 1] # 0(1)
i=3-1 #0(1)
merge(L, R, A, i, j, a, b - 1) # S(n - 1)



left array

#wnot in place
A c2n m2ake Sfable by preferring
merge.-sort (A): psevdocode
size of A

return A (2lready sovrted)

iF AV e 2:
mid = 1AVIl2

L= wierge.Sort(AL:mid )
R=merge - Sort (ALmid:T)

return merge (L, R)
equal!!

Tlwy= B(nY + 2T (w12) e2ch level is w wovrk!

A work ePev leve|

rik olon’e
(-

w
MERGE SoRrT: e(n\osn)

@ w2 2x "2 leg(n) levels
CICRERETD xnrs
20 Peaxk FinoinG: | ¢l .\ 2 | * looking for ANY peak, wnot max peak
—rpeak
‘Find_ peak- ID(A) = O (logn)
™ v —)
1 . Gi.jy is peak if ACi 33 2 ALi*, 3] &
wn 2 Q2 . . .
! 2 ACLGY 2 Ali,j21]
(G.3) 2 peak in A

GoalL: algoriHaw +hoat returns

BRUTE FoRCE: O (v xw)



IDEA: DIVIDE + CoNguer & THIS IS A BUGGY SoLuTioa
™ -
Jwmid ='.2.J

Col-peak = Find-peak-20

Col-peak returns some valve i s.k. li,j) is 2 peak in column j,
Check f (,§) s peak iwn A.
CASE 4: i+ is. rerorn (i, j)
CASE 2: s isnt. didnd £2ai)l A or S ble we used col_-peakl). must have
failed E or W. vrecurse in upwill direckion (L or R).
PROOF: induction on w.
INOUCTIVE HYpoTHESIS (preposterous): assome the 219 wovks for Arrays
vp o w -t. ITMNOUCTION: Shouw it works Ffor m Coluwmns
BASE CASE: wm=1: 20 peak finding, Wwhcth we know +o be correct & returng
2 pPeak in +the colomn, Whch (S a peak in A blc 4d0.
2cquire Jmid & call col-peak(ACi, jmedT) = L*
CASE (= (i*, jaedl) is peak in A. v
CASE 2: ALi*, jmed] has greater valve in L o R

WLOG (without loss of generality), higher value is in L. recursively <all on L.

J_Jdwid . ..
= (i,JB. ACLli. J] is peak in L. ble of preposterovs hypothes:s
LR CAse 2a: j < Jmid-1t. by inductive hypothesis (i, j) is peak in A.
= SR,
CASE 2b: j = jmid-I. Show (i.j) is peak in A.

Bue: we don't know ce\attons e b/ i R A, need +o establisthh 2 relahonshp
& can+ use 40 peak Frnder — wmust £ind wax peak of coluwmns
NEW InQucTiveE Hypo: asgeme 21g. worksS vp +o m-l. ALSO 2assome i+

returns a wmax in col .



a/18  FASTER SorTING
so far...
-insertion B(w?)
- selection B (n2)

- merge O(niogn)

ComeAarRiISON MopEeL:

Comparable: black box +hat Supports binary Comparison operations

INPUT: 1ist Xy, X2, ..., Xn. k€Y iS tompavrable

OUT: O €Sn s.t. Xico key 2re intreasing with i

Decusion TrEeE:
?
X<y® sneed @ 1eas+ 4 1eaf For e2ch permutation

Y w
wez? A=b? every pérmutaton moust have 21 leaf

/\/\ PosSi@LE O's 2 ' l\eafs

AT ETII A RooT-To-LEAF PATH € runtime
g, o, o o

HEIGHT: Worst case runtime 2 logln!) 2 ntogmwn

2 log ((!\i)'\lz )

#branches always binary (2 per ievel)
- Wn
= S1ea T € Rfrrogn)

need superconstant branchin +o beat wnlogn
9 <9

RerFerenciNG /DerREFERENCING:  ALRLII]) [s.7.2,.0.47

(direct access arvay) d
DAA -SOoRT: assume 2l keys 2are N a [0, u) 3 OIsTINCT w=7+1:=¢
AlLx.key] = x [O- 2 - 45 —-’] 2rray of size 8
© ' 2 3 4 S 6 7

.\.Sp:callgl * Stable bS defaovlt blc nothing can appear +wice

yoSt+ vse
) (no duplicate keys to preserve man...)
WS i nstead

[o2 us 7] copy array back

what (f keys neot dis+inct 27?2
Sor¥ing by #s
—_—

@ CovATING SorT CHAR ©0 6
PIKA o2 S . .
s fo~ of€. values
- 2llocate a2 sequence SNOR 1L 4 3 key collisien T
wWikhin LS MCHAR O 0 &
[ cMmMaindain sl-ab-‘l-'l-j: MmouSt ensure sequénce wewmor'zes
© . 2.6]. - - 143

[cHAR. mcHART insertion order (queve, etc)

* Store ‘cwain’ or queve of 21 elts. wl same key

cconcat+ 3l chains toglther +o create output st

+ Stable, but not in place (uses extra mem. 40 Sort)



2Ssume keys are +uples of equadl ength.

sor+ by Col A, Col B 1exicographically
TUPLE LENGTH: Sor+t by key components individually in order of s:an:&‘;cav\ce
Ex: | Sort carcds by souit (clubs. diamonds, hearts. spades) then #
cCounting Sonrt: put cards into  souit order, Sortr within  Sort,
putr 211 back together ORrR
Sort b5 #s, then by Suif = same output!
TLOR: doesn'+ matier whether we sort by less/wmore significant key; if seort

by less sig. Fiest, need +o wmake Sure we preserve oeder (s#ab-‘l-‘i-j)

RADOIX SoRT: what+ if w is larger? e.g. «w=n?

3n+ S > (3, 8)

TuPLE SoRT _ usin CouNTING SOoRT 2SS o©ur 2uxillar alqorithm
9 9

MOST SAY: douse +uple Soré wWith 2uxillary _Counking sort 31g
keys in base w -

Ex:  [17. 3. 24, 22, 127 = [(3.2). (0.2), (4.4), («. 2), (2.2))
9

) [ 2 3
B(n + niocg,u) (e.2) (2.2) (3.2) (u4.2)
(4,9)e— 4.S+4z24
whewn 169, 4€E0(1) if w is sman: C 3, 12, 19, 22, 24 7]

Ssorting ¢akes linear +ime
niv, niognyv,

rx SORTIANG ALGS: RUNTIMmE: STABLE? IN PLACE ?
insertion 6 (wn2) v’ v
selection e (n?) X v
merge © (niogwn) v *
DAA B(n+u) v’ X
Counting B (n+uw v Pat
radix B(n+wn) v X



a123

Fino-PREV / Fimno- NEXT

BuiLo Fino INSERT/DELETE
ARRAY B(n) Bln) O(w) ©+w)
SoRrTED ARRAY B(niogn) O (legn) B (n) 8 (1egw)
DAA B (w) 10 ewm 6 (»)
HasH TagLe 6 (») B(Yexp. Blexp.lamer  B(w)
bottom tine: know when +o use wwich g find (key) » t+rewm
* SORTED ARRAY: range queries %\ < 25 2 n 2 k=log,n
Lz—K]

* Hasu TagLES: lookups by key

* ARRANS: 23\moS+ wever

WARM-UP: O(1)-+ime Find w/ huge wmewmory overhead

uSe 2array of w elements: F 31l keys are in fo, [ u-(g = [u]
(-] « 2 3 [ S .o
Ll | [wem] [ | | & dicect-access array

insenrt (3, ivem)

Eind (s)

Kdict is imprlemenied w!l Whasl. +able

Ex: Student id’'s w109 {d #S 5 N students, Lz 10Y 5 (oks of wasted space

o] -1
HasniNnG: | I
hifulam]
e use DAA of size m<< il
°© 1 2 .. wk) )
AL ] Juenm| | | wirelm]
W(k’)

e collision when kKEk'e [ul s.&. hik)=h(K)

HANDLING ColLisions: oOpewn addressing
© « 2 <. Wik) mel s‘alNG’
al 1Tl ] T | [ 1] N items

) S —" T m +able svae
W 2 wn

sStore W(k') & item in Nnex+ available empty bucke+ 2

« don't need anoctuer data Strouct

* however, inserit/deletre makes 319. complcated

HANDLING CoiLLisSionS: thaining
© 1 2 .. hik) mel

Al LT T, 1 [
t T t
owfH o Biewm

e each ‘bucket’’ (spot+) now points +o 22woiner DA A

* hWash *2ble Shovidn’t be +oo0 sman

Fimd(l‘)): O(1+d) insect (itewm):
C=eﬁ:|[kLk)] c=ALh(item.keu)]
ew Czinsert (i+em)

return c.find (k)
—
o(L)

blce we wany DAAS in each index +o

be smal



Ex: find 2 collision

h: Z->Me] hilx) = x mod 10
ha (¥) = x mod 10000 #tseewms Iike it’'s odoomed
ha (1) = ha (10001) ble of Pigeonhole
h(x) = Leos (+an™' (x+15) )

* pick Wash funchion in secre+ afier given keys.

SIMPLIFYING AssomeTIoN: have data Structure pick truly randem hash funchion
O hash s picked independentiy of the keys Wilul 2 [m]
- SUHA

:Exﬁe(.‘l‘ED" Time For Find/insevt:

-imagine we've inserted items wl distinct keys k., ka, ..., knelu]

cinsert Knew ¢ ik'v ka,.--. k"g

- look @ prob. that k hashes +o same bucket+ 3s kunew
M4l

Pr[nik;)= hiknew)] = E,Pf[hlkj)zi A h(Knew)=i] # collisions
>+ C h(knew)+|
= EJ’*[MM):-‘]-P.-[h(lme...):-‘]
C4 /—
¥
= = = = Ltoao _
= (M) . (”) . FACTOR — <
= T ¥ items
the expected cnain 1engtn @ thikwew) = E[L] =1+ & Pr[Mk,’): "\“‘v\ew)] =1+ Taoe sisE
= 1+
ExPECTEOO:
w w
time to insert: I+ =l+% =1+3—-€0(" m=table s/ze
"= & total items inserted
STORAGE FOR TASBLE: w+mn Mm>n, m= O(w) L=siae of +he bucket

* takes lots of time 4o dovble hashk +able size like dynamec array.
Wilul =2 [2m]

AL TTT T | )

Ex: | python: hash (fcow™ ) 9 always ge+ same # uniil gou quit thuon.
9 3 g ry
-$+3an3 Pytiron over o qet 2 d:Frevent: #®

- good for preven“ns hackers



alzs BinARY TREES & BinARY SEARCH TREES:

DATA STRUCTURE: BuiLo Fino INSERT/OELETE | Fimo-MIN/FIND. MAX | FINO- PREV IFIND-NEXT
SorTED ARRAY: niogn | logn " 1 logn
HASH TAgLE: N(ey 1 ey 1 (o) (e) n n
GoAc: niogn logwn logwn logwn logn
key prime

EX: X olo P

BinARY TREE:

B:z1ef+ child of A
Cz right ewildl of A

 \
@leaF

Az parent of B & C

root
/(@ DEPTH of node: dix)z # of ancestors
@ *root=0, leaf=3
/ HEIGHT of node: Wh(x)=#& edges of lowngest path from node +o 2 12 €

@\O - rootz= 3, leaf=z=0

S h=0 lloan\

@teaues
TrRAVERSALS: O(n), n=#nodes e °

IN-ORDER: visits first, recorsively the 18Ff+ child, root, right child

as0. vz 07 e @ OE ©

PRE-ORDER: visits recursively Hie root, thewn I1efs, then right wodes

>U,Q,S,L.R,I,T.E Inorder Traversal: 4251637
Preorder Traversal: 1245367
PosT-OROER: visits recursively +he |eft, then right, Hhen wnode. Postorder Traversal: 7635421

Breadth-First Search: 1234567

= SaTTRELU Depth-First Search: 1245367

BinArRY SeARcH TREES: # distinct keys

for every wnode q, 21l the keys Stored in +the lef+ subtree of q

valid BST:

2re smaller than q's key & all +he keys Stored in the nodes (id)

of q’'s right sobiree ave greater +han q's key. (&)
<10 >10 @ (@ 23

\,T T.itemz= 1O
(8) (29 T.1ef:, T pacent, T right
@ (a (2D
(—’NOT 8ST blc everything on Ieft of root should be Sirictly Smalier, but Il K 10

ind (T, k): find nwode in T whose item has # key k ¢ i+ exists, ise Nomwe
if T is Nowne: retruern Alovne O(h) h= heignt
£ kK < Titem.key: retoen Find(T.(ec+, key)

i kK> Titem.key: return Find(T.-rignt, key)

retven T



o
h=0Ol(log,n)

- q necrqhit =4y
EX: | height=3 n=ts xQ '3
o
SN
bo o
Findomin(T): keep going Ieft untl can't anymore
find_max(T): keep going right untl Cant anymore
Cind-next(T.x): next+ node 2F+er X in TS inorder +raversal
CASE 11 if x has right child, SuccessSor of x s swmallest element in +he

right sobiree of x. Find.win(T.righ+, x)

CASE 2: successor of x s ISt ancestor which we reach Hwrough 18Ft child.,

def find_next (T):
# Finds next node after T in the in-order traversal
if T is None:
return None

2fe T crdghts:
return find_min (T.right)
child =T
while child.parent and child.parent.right == child:

child = child.parent
return child.parent

delete (T. x): O(n
-
CASE I: if node iS 2 leaf, just delete AN > A
ASE 2: node oniy has one child, replace with cuitdh /{\\? - /f\

CASE 3: node s internal. Swap With successor (Fmd-vext) uy

30
250160-, 1_5/\260

successor will not have a 1ef+ child, or else it 30
would wnot be +he soccessor, 12 ey
/' \ /
Ex: ,lo IS o (o \\s
. . - \ 7\
predecessor will not have right cwhild. a i alh



alzo def in order(T): ()
if T is None: return

in-order (T ICF+) /A\ /B\
print (T item)
in-order (T right)

1eF+ roration: N

o 1o
© 1 @
D

® m A.0.A, 0 .A
(<) A [A\ E def right_rotare (T):
A\ /8 }l retorn Teee(T.1eFt.1€FF, T leFritem,
. 3 c left node
right rot. Tree(T. 16f+.right, T. item, trlshi—))
- ef+ node right
def left_rotate (TY: le€+ gt

retorn Tree (Tree (T.1eFt, T. item, T. right. lef+),
T. rignt. item,  node

T. right. Fight)) & rignt

PerFecTLy Bacanceo Tree: iF T is full @ every level! h= O (tegn)

O v él)( W 1 g) v * hard +o 2chieve
\ogq"™

Skew (N): height(n.right) - height(n.1ef+)
WM vnodes:

K{“ AVL ProperTyY: if Vne T, Iskew(n)l< 2
w2, .
FANS -as

long as odeepest Ieaf on owne sde is £1 deepes+t Ieaf on +he other

-2 iree with AVL property has we O (logn)

L. Nz Nz + Ny + 1 & Fibonavecei! exponential growih

Ny >28NnNKw.2 2 theighti
W

irem
Nw>22 = 2logna, >h=bh€0(losn) A A\ZI'

T height: insert C leaves

new node gets height = 0O

kinsert & delete ace logarithwmic!



Deletions:
) 1e2€: throw it away; vedate Hhe ances+ors
2) internal nodes have €| cwild: replace node Wl child; update ancestors

CASE I skew=2 skew=0 CASE 2: skew=2 skew=t

K+2 kH K+l kel
1ef+ 18+ k

= @ 0T rotate 13 @:@Ak k-2 K rotate K=
k"AAK “"A/ &k-l ""A K-t k"& k-l

kcant happen during inseriion

k+2 @ w+

K ‘
[y k4l - @ \ cignt @% 1eft / @\k
A @ & A EQA_’ BA
x ko AR &

AVL SORT: use AVL +ree +o represent our set. B(nlogn)

CASE 3: skew=2

skew=0

det avi-sort (A):
for o in A: tree.insert () & €ach insert zlogn. total insert [B(niegn)]
for x in tree: iter_order(): B.2ppend(x) & B(n)
return 8

10/\ AVGMENTATION OF TREES

* dynamic order statistres &size Fetd
Ollogn) for dynamic sets For O-S

. Mm3aintainery avgmentations

OPS —»

* _interval +rees

just 8sT ©s
125t ime: BST — AvVL h= O(n)
o(m) Oliegn) (coutd be)

Oro€r- SraTisTic Teee

* get ith ocodevr sStatistic: element in st with ith Swmallest key
give i—» return glement

* Fank: give element I rerurnn poSition i in asgend.'na order

c X.Sig@= x.l|eft.si2e + w.right.size +I

RETRIEVING EtemenT wl Given RANK:

OS - select(x, i):

fz x.left.Siz2e+ | os-select (17, 17-13)
Yt

if issvr: fCtuorn Xx H-2 = 2nd
else if i< r: refurn OS-select (x.1ef+, ()

Dshifred
eise: veturn os-seteck{x.riqht, i-r srv;:“e



FINO RANK OF ELEMENT: given pointer to node x
Os-rank (T, x):
~=x.1eft.size + |
Y=x
while 4 ¥ T:
i ys=y. parent.right: rzr+y parent. left.siae +I|
Yys .- parent

reroen v

Dvnamic SeTs:

8sT: @ * Secono PHAsSE: Ave Rorationss

+1
insert: +| . +! S e owm tonstant # of wnodes
@ 9 & — Z6\ % With +heir size changing
VLN AL

TanTERVAL TREES: interval-seavch (T.i) D find 3 node who's interval inrersects L if i+ exists
low (i) hWigh(i)

is [ﬁl, tz] | —3 ' 3
Wighli) 2 low (i) ' 3 :
s ° — —— e
— e | —
" 3 s 2 s
X. low: key N
. < 16,21
x. high ///Lﬁ%\\\ AvL 8ST
) = unsuccessfol: (. 147
(5.8 (ms23)  (pzas)) (126260
10 / 23 \_20 \_30
/N \
(1031 ) [[6.101) [[29,20])
\ 8 L 5o \_ 20 /
X. M=z max(x.high, X.1ef+.M, x.right. M)
Interval-Search (T i):
X=T
while x# Nowe & i doesnt overlae [x low, x Wighl:

if x.1ef+ # None 2and x.lef+.M = lowli):
X =x.lef+
else: x=x.right

return x



Interval. Searckhh Proof:

() suppose we go rignt () Suppose we go 106+
X.ef+ ==Nowne x.lefs.M< low(i) need to Show f no interval in X-lef+ overlaps
i :
) ! i . . 1ef+.M
., :(—x € then wno interval in x.right will overliape
[FY I' #92¢Ff . =
— low (i) ,_"_| s x.1ef+.m 2 low(i)
‘s lowi)  high(i)
i low(i') > high()
N MIDTEQM i ~ X.right low(i") > low(i')
1077 GRAPHS: 6:=(V.E)is 2 ser of verticeS V & 2 se+ of pairs of veriices E S Uxv
LUNOIRECTED: OIRECTED:
*E fu.v} unordered edges everiices are ovrdered pacrs
v
» sige of E: |E| ¢ [ ; ] = O(lvlz) ° E (u,v) distinct edges
(A}
crer<2['2') = olivz)
SimeLe GrAPus:
x| 11 OO0 wne duplcate eodlges (u,v) for unique o,v
x| 2 g no self looping (U.v) for U2V

2dj* (U)= set of outgoing edges from u.

2dj" (U): se+ of incoming edges o 2dj(u) = defauirs 2dj*(v) (outgoing)
deg*(v) = | 2d;* (vl

deg-(v) = lad;-(u)l

how +o represent in computers? — adjacency watrix
A B ¢c © &

A L L L (U,v) index into ddjacency mairix & Find
K el te it tnere's an edge in 601

c

o space: uses 8(Iviz)

€

® Matrix iS useful when 6 is odense = lots ©oF edges with respect +o Ivi2
not ideal when &6 is sparse-» not So many Bdges w/ respect +o Jvi?

IDEA: use 2 set with B(1) lookup operations (PAA or Hash Tablie) to Store adjar.encﬁ I’sts
AOTACENCY LISTS: USe DAA, hash +able, inked IS+,

mAaTRix: O(1vi2) space Uz:vdes‘(u) = ||l € 2dd an out degrees of vertces - # edges!
AD3. seT: B(Ivi+iel)

- Set backed by direct arvay

-e2ch el+ has veriices i+ goes to

(8.c.0)
(A.0)

MoO®»



® ® PATH: Sequence of vertices connected by edges

©

© Ex: path A2Q: (A.8), (A,C.0,A,8) needed +o +traverse

frovr U +o Vv
—_———
- & (v.v): distance From u +o v following the Shoriest path
#* I (v,v) =00 by convention F +here iS no path from U o v.
Single_ pair. reachability (6.5, £): true iFF there's @2 pa+h from S +o & in G,
Single. pair- Shortest_ PaHA(G6,5.t): return Shortest path 8 its distance d(S.e) for S & t in G.
3 Solving +his problem Solves reachabil'ty issve
Single.Source. Shortest. patn(6.5): return Shor+est path +ree &8 se+ of distavnces for au veriices
st+ar+ing @ S.
-’Solv:ns +hes solves Single . Pair- Shortes+. pat,
how +o represent Shoriest paith +ree?

&) ABCOE 2
Ex: A0 (&) © L S2(12)

©

moN~®>»
@R

idea: Sstore elt. before Current

9o in l2ayers — BFS: Loz £53
J P for vel:, Z des‘|'(u) . 'v|
for L€ Adj(v) vev
if d*fuvl=zo0: ) .
Livs 2dl (0) cost of 8FS= O(IVI+1EI) &runtime
FLol =it Proof of correctness: induction
pPLul=v Gagyers)

® /é) OFS: single. Source . reachability (6.5):

N

© © def visit(P,v): Pzhash +able

adive in for uEAdjlv): A % improved R.T. @ sacrafice
if uéP: e|Al Ruamine Time: O (1€1) of Shortest path
Plul=zv : g
visit (P, L) elo]

A can see if vertex is in graph
in OO,



T(n)= O(n2) WRoONG!
T(M-T'(n) = O(n2)-0(n2)=0 X

T =0(n2) counter:

T(n\:nz S Ty Ty vz
. n)= n)zanNnc - (o]
T'(n)=7€0(w)

don‘t subtract=> USually adol!
1oy LAST TIME:

*8Fs
- OFS
‘Single-source Shoriest path - solve wi BFs

Single-source reachability = Soive wl DES

]-h'me O(ivi+i1€1), linear in graph size

(vnoirected grapns)
ConnECTED COMPONENTS: +wo vertices U. v Are in +he Same CC. if there iS u-v pa2th in graph

@ 3 e ex: 2

how 40 find Connected components? input: 6:(V.E), output: CCS

Se£3 set neding (s ToraL RUMTIME: linear (DES/BES oniy teuch €ach wode
only once)

for each veV not 2aiready im > CC im S: sieppy: (O QvI+Ig1)) - Iv)
Solivi)

fun Cé& SSReachabrlity (6.\:) & ex: a ownly returns b blc only reacwhable node
€—0OFsIBFs O (IvI+IEN)

add C to se+ S
O(=vertices in c;)
return S time: OlIv1) + E,,,c + #edges in C)

= O(viIV+o(ivi) +o(1Er) = O (Ivi+IEL)
DiREcTee OGRAPH:
?Q(D ©
@ /®
(for oirected graphs)
STROANIGLY CONANECTED COMPONENTS (SCC): *wo veriices u,v ace in +the Same Scc f
(%) ca
®—-0 @ 3 v-v path AND v-u path in +the (directed) graph

@ ‘-3 A2S soon as edges have odirection, be careful of single vs. bidirectional
Cy

ComvoeNsAaTion GRrAPu of directed grapn: SCOU"Ce

> Geon o2 #ovraw edges going
V= SCCs of 6 = EC.,C:, Cs, qu C,.‘/ \ < b/t CCS 5 cavlfu) of direction'
L]
3
l sink
E= there is an edge (c., C;)€& Geon cf" *nice WY {0 Summerize Structuce
i€ 3 2w edge frow veriex in Ci Sink in dicected graphs

+o ver+ex in &
(directed acyclic grapn)
CLaim: for every directed graph G. itS condensation grapn Geom iS acyclic (no cycie) - DAG

PF BY CONTRAOKTION: assuome 3 cycle in Geon: Ciy, 2 Cig=d...= Cipn

211 vertices in Gi,..., Cim are in $he same SCC = Cin, Ciz are in same SCC. con¢radicéion.



2ph:

C2
®
o\
°C3
l Sink
Cyeo
Si
IDEA: nk I'F-'v\-‘sl«hns $:me_of
e 3 Sink Cs.‘nk in Geon root 2lways > Subprob,
* BFS/DFS from vertex in Csink finols entire Csink. ExAM:
“Qi: how +o Find vertex in Csink? Found Csource, but want Csink. reverse acrows awnd 83 min
See whith Finishing time S longer, p‘.’ 73
-Q2: what's nex+? ey 'p) ;
Oo(ivi+1E1)

FULL DFS: run DFS from €very unexplored ver+ex in 6 uwtb’l 21 ace explored
FINISHING TIME: of 3 vevriex v in Full BFS run ¢s +Hme 3t whicth rum has Eexplore V
and 21 its wneighbors
KoesaRAT V- SHAvR: finding Sccs
CLAIM: ¢ C 8 ¢' are SCCs 2nd 3 edge C->C'
Hhen if run FUll OFS fFrom 2wy verilx,
largest Finishing +me in C is bigger +han largest finishing +ime in C’

Proor: +wo cases
1) C explored €:irsi & a

2) C'explored Frrst

Finoine ALl VERTICES a0 Csource:

Finpsource (6): Fino ace of Csim(6):
‘run Full- OFS on (. vecovoling Finishing i mes -réverse an edges in G +o ge+ GTEV
-Vé& Finosovece (GT€V)
cretorn veviex wl biggest ".‘vu'sh.‘ns +ime.
‘feturn SSReachabilty (6.V)

FinoScc (G6Y: OlLivi+ier)
c1et 68V pe 6 wi! 21 edges reversedl
s ron Ffull OFS on 678V "ecordrns 9-\«{:9\?“3 +imes £
*ron full OFS on G w/ vertices ordered by
reverse Finisih Hime £ (highest - lowest)
~€ach +me need a2 new +ree, mark 2s new SCC
F:nfslz:ua Hme:

\olle Topo Scev: [must be on 2cyciic, dicected graphs)
ToPo ©ROER on G=(v.E) vs oroder o V edge (u,v) O (u)< o(v)
DFS, reverse F:inisw order ;s topo order
A < 8
ReoucTion: 2igovithwm Ffor $ransforming one problém +o Snoiher
Ex: SQuaring wmult. atz=c.a (Tw--'ns & Coke Redouction)
EX: molt. +o squaring (a+tb)icalr2abrb?
(a+b)2 a2 -p2

axb = 2 (Tur.‘na 2 Coke)

Ex. reachabilty rto SSSP: see £ d(S.v) is €imte (Tur-’ns & Coke)



TORING REDULLCTION: A+ B fF a3 A

- ‘ovacile Subreut’’ be

Soln 4o R is

Coox ReoucTion: polgynom:al +ime Toring

THM: ASr B in +ime f(n),

£(n)- g(n+ £(nY)

MANY - ONE ReOLLTION: ASm B
fn ¢ alg.

EX:| sQquare +o main

A (a,a) square (a)z multla, o)

it reduction is poly +ime,

ReovcTiomns & GRAPHS:
@ GRAPH DuPLicATION:
PrRogLEM: given G=(v.E),

+wo veériices s .t €V

OvTPuLUT: Shoriest eveén-lengthh S-t path

Vizvx§£0,13 = Flvb): vev, bzOori1?

g'= $(to.e). (v, 1-8)): (u,vie €, be o133

(6.56) - (6, S0, te ) reduces SPSP +o SPsP

runtime: Iv'li=s 21v)

linear +ime +o tomputre 6’
1€1= 21€1

O(21vi+21€1) = O(Ivi+1€))

SeLFr - ReoucTiON
OUVTPUT FORM:
vi:

ovtput (s, -)

v2: output P sShortest path iree

+hat solves A
Sometr:imes

Reoluct+ion

G'=(v'.E")

while using B 25 3+omic Subroutine

called ovacie

(peljv\em-‘al vpper bound )

B solveable in +ime glw)

take inpur x for A

transform +o y=F(»)

B8(y) shouid be Same
answer as A(x)

called Karp Redouction

S.o S.O
\bo bo
® tO ° to
a°./ \. ool )
S Se
S~ | b
L] L
—t t
al c/ ¢ al ./ °

lineav

HUs.v) =1+ & (s, Ptvy)

Vi€ Vv2 compute depth with pre-order traversa)
v2evl for €ach vertex v, P(v) is in-nerghbor w/
INPUT ResTRICTION: 6

is sewi-Cconnected

proviem: givewm G, is & semiconnecteo ?
problem 2: E S < see if an edges (v,v+i)
problem 3: & acylic reduce +o P2 with OFS

exist

pairs of

ifFF YVu,v vertices, there s either WU-v ov v-u path

v



ol2

EITHER OR!

no+ both.

impiementaiion:

0 PrioriTy Queves Ave
build (A) O(niogn)
insent (x) O (logn)
delete-.max() O(loegn)

E delete. min () O liogw)

if multiple, dele+tes one of +newm

HEAP: sequence:
O ()

Oliogn)

O (togn)

def pq-sort(A): O(nlogn) sorting. NOT in place (have to builel tree) AvVL:
ite
=01 o) el
neigut
q:= build (A) O(niogw) L]r
for iz0... |A):
O (niogn)
8.prepend(q.detete. maxw()) Oliogn)
refurn 8
bindry
Comepacr ! Tree: 21 wodes pushed as far 16+ 25 can be
> has I:l covrespondence w! array implementation
RAY REPRESEN on:
(8) - - E— £ind cwildren [ parent:
Mognl s8lo|7|s|3|o]| (byiever)
logn ©) ©, ||\;|3lu|slsl LEFT(*) = 2x Xz parent
@ e const. overheaol for maintdining 1eft chitdd = 2 %
© w nodes nuseful For heaps RIGHT (%)= 2x 41 right chilol=2x#
X
MAX DEPTH: [ognl PARENT (x) = L?J
MAx HEAP PRoPERTY: Ffor x€ Tree, x 2 (eF+(x), X 2 right(x)
‘dont know relationship b/t LIR children, but know +hat parent iS biggest
“MIN HEAP PROP: oppos-+e (parentz= min ett.)
(€) . .
def heapify_uplx):
& & = |sle[[s]3]o] = )
T 2 3 “ S 6 P 2
© 03O
if Alx] > Ale]): ©(logn)
insert (9): Swap Alx] with AlP]

® ® Q
**
O ©006 ©O©06

[olefs{s]s]o]7]
2 3 4 S 6 7

delete. max:

Swap roo+ wl last node

heapify.down (1) estart from
roo+t

re+uorn vemoved value

]

he2pify.ve (p)



heapify -down : Compare wl children
case 1t A[x] > A[L0()Y]

2 A(R(¥Y)
[+]e|a][s]3]o] case 2: A[xI< A(L(x)]
2 A(RUN]
Swap wl L(x)
|8|6|"|$l3lo| case 3: both cwhildren » Alx]

Swap w/ larger child

2

ge backwawvds +Harough A
O.00 O

heapify-down 2along the way

wn
2+ every level, # nodes = 2
logn covwev‘sfs e‘.n
At 2 cownstan
work = Eo 2h+t ch L 2 6()
loan . logwn " o0 w .I '
= ne 3o 2h < ne hz=° zh < we EO 2» = ne 0__;_)3 - work € etv\)
def heap-Sort(A):
build (A) 6(wn)
for iz ... 1Al:
B (niogn)
decr. valves ——»  delete.max() O (logn)

19/23 SHORTEST PATHS: DiykSTRA

SSSP: single source Shortest paths

‘on _undirected gqraph w/ equal weights: BFS O(v+E)
reduction/
on undirected graph W/ non-equal weights (Small positive ints): graph dupl‘:'iah':n O (w(v+ey)
cW: max weight of graph

“if w is vgly #, have +o go through & compare. €x: 'l2, 2.2, %, €

Rfor now, posi+ive nown-zero #s.

Wlu.v): weight of edge b/t u & v

F(uv):  Shoriest path weight b/t wu & v dis)=o
A(u)z=00 LS

d'(s.v) = d(v)

d (uv): distance esrimatre of shoriest parh b/t L & v in

d(s,v) = d(v)



TRIANGLE INEQUALITY: W patns

g (on,e)

dle.¢) ¢ I la,b) + I (b.c)

for paths

d*(b.c)

%"’,@ wW(a.c) » wia,b) +wib.e)
2
ch
o° -3 2
RELAXATION: Alul > A[ST + wlS, ) Ser dluvl=2
10 0o [~] 10
o(s):=0 d[vlz o dlvl > A[sY+wils, v) set dlvl=io
relax an 5 (3 1o 2 s
edae dfuvlzoe dfv] > dvl+ ulu,v) set dlviz=
reilax(v, v): Hreiaxation is safe
se+  dlv)z min(d(v), dlu) + wiu.v)) - What order +o relax in?

if dlv]l changed, set parentlv]l=u

order in +teems of J': from 6 +o others

\ 4 Src
GPYBR

\3

R

™~

@ AN
6 \, “/ /'3
b=g),

DisksTRA:
-relax edges from €ack veriex in incrementing order of distance frow sowrce

cwill_use Prierity queve O on veriices (unique 105) S,u. v, erc. 3wnd keys correspond +o ollv)'s

ALGo:
- se+ o[s1z0, d[vl=c® For veS in V (3) decrease.-keyli, new-key):
bouitd  priority queve Q for item (v,dv)), vev (&) O, s change val & neapFy.uvp
®» ®
while Q wnot empty + logln) time heapify vp

- delere (v, d(v)) From Q, with min d(uv)

for ve Adit(w): reiax (u.v)

delere v
from @ |s a b ¢ d
2 @\", s O o e o0 oo
@ “0'3 @ c 1o 3 d(c)=3
3\‘©z/;"}, d 1o s S d)ss
) o 2 10
b Q
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CoRRECTNESS: @ end

- if

of ODijkstra, d(v)yz= I (v) for a0l veV

relaxation Sers dAv)z S (v), +hen dA(v)z S (V) on +ermination

-vei1axation s safe & only decreases d(v)

show d(v)= d'(v)

STRoNG

Wwhen v S vemoved from QG

InNO of number k vertices removed Ffrom Q.

BAse Case: S ds)=0 = dJ (s)

Ino.

@"‘"""®—‘®'M"® Y 'S Ist ver+ex in ® +hat is SEN

redecessor
e of y J

Srep: we 2are remouving v from Q 2and au

vertices w removed from Q,

assome d(w)= Pl

let ® be 3 Shoriest P+ WIin)= J(v)

w(x9)
in Q.

¥ has been removed

IT.H. d(x)= J(x)

(x.4) was relaxed whewn x was vemoved = dly) € Fx)+wlxry)

Subpaths of

Swhovtest path & are sworiest paths 2 dly)= J(y)

g (y) € J(v) non-negarive edge weights

€ d(v) relaxation s safe

s d(v) V iS vertex with min d(v) on Q

d(v)=z & (v) (‘dlﬂ\)

BeLLman Forp

Dijskira F2ils for wnegative edge weights

2L, @y
OO
s 00 , @

2 if we run Dijskira uith +100 +o every edge,

(vovi) | (veva )| (va,vu) | va| (v3,va)
(v,v3) | (v, v3)

Staes

~

discourages shortest path.

NEGATIVE WEIGHT EODGES:

3

DAG SHORTEST
* no cycles,
@f/?\c:
e
\©<®\
@

topological sort:

CLaim: DAG +opelogicdl Sort

?'_5‘/,?7‘@&@ NEGATIVE WEIGHT Cycie:
©—§©T' -2

bf g cb = -2 weight cycle

PATHS: negaiive -weight edges

no negative cycies

u@ disi=o i€ difFerent order:
() dla)= o0 Ss+: relax gqou
v - order of relaxation mailters.

V-
dfu)zoe “3®dtv:|=co
S o b c d

Computes Shor+eSt path Gvewn W/ wnegative weights

109
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Ivl vertces @—)? W.+w2>0
H@j'—'z longest simple patn (en

(#eadges) € [V]-[=simple

SIMPLE SHORTEST PATHS: SIMPLE: no veriex s repeated
no neaq. cycles
CLam: i€ d(s.v) iS Finite, there existS 2 Shortest path +o v that s Simple.

Could i have pPath w/ positive eight Cycte +hald 'S Shoréest paih?
w
E>@>®>® SP: a bc a byv Wi+W2+W3 >0
g
k-€oce Oistamce dkls.v)
IS minimum Weight path from s 4o v with £ k edges

compute  Jlv-1l(s,.v), IIvi (s.v)

CLAIM 1: no wegative cycies d(s.v) = diviei (5.v)

NEGATIVE Cycte [N.TNESS:
F c’\lvi(s"‘\< d\lv-n(s"’) Shortest von-simple path +o v, se d'(s.v)=z-oo

call v 2 wnegative cuycle wiiness

CLAIM 2: every wegative weight cycle C reachable from S contdins 2 wikuess.

?_—) CO—0——o0o d\leo (S,Q\ J;q(S,a)
2
2 Ivl=ioo J oo (S, b) J (s.b)
@O=® Qa
-3 d; (s.o0r=2
d2 (s.a):=2 Juls.a) =
ds (s.e)=1 ds(s.a) =p

di(s,b)-c2 da(s.b)=z4 Ja(s.e)=4 dyls,b)=3

ProofF of CLAmm 2: Eov vecC. le+ V'S predecesSor in C

‘negatrive ~wt cycie € reacnabie from S
Z (8w ) EEdivi-1 (S.v) + WiV, v) e |vl edges
vec vec

5vztcd;v|-u(5.v) + vt“u(v',v) <e

2 Zdi, s < VEC divia (s.v)
vec



BeLLMmAN - Foro:
Example

0(ao, vi)
d\ J2 Q
k\v H a | b | ¢ ‘ d
0 0| oo 00 00 indki a1

1 0 =5 6 00 reiax

2 |[0] -5 | -9 9 Q:
3

1

d(a,v) H 0 | —00 | —00 ‘ —00 “ @ -

Note that b is a witness, and ¢ and d are not. The negative-weight cycle is bed. Claim 2 simply
says that there always exists a witness in the negative-weight cycle. Consider the case where there
is an edge from « to a different vertex e, meaning that |V'| = 5. In this case, d5(a, b)

= —T7,s0bis
not a witness in this new graph, but d5(a, ¢) = —11, and ¢ is a witness.
*produce z odupicated DAG level by \eve|
* Compute k edge disi. for each k
Ivi passes of relaxation over 2l edges |E | IVi-l passes > S.P. wis.

O(iv|[€Y) 219.

ONnR wmore PASSH WitnesS

1o/30

Wi SSSF’ A| ."e O() . ALL- PAIRS SHORTEST PATH S:
Uﬂ*' fied EF.S L ' y ‘De finction

‘, ‘ Dﬁé i Ivl 3 © Al-pairs reliabiity

B Any A Rllme-fod WHE ) o

| —

- Johnsons Alg

THE Prosiem: APSP

InpuT: directed grapn 6= (V,E) weights w: E> Z

outpur: J:lvi2a ... f(u,v) lengi of shortest uv-v paih output len L (1vI1?)

orR ‘raic” if 3 wneq. werght cycle in 6.

GRAPH: WEIGHTS: ASAP AlG: Time OC()

2any non-neq, IVl- Dijks+ra lvl"loSIVI ¢« IVIIEI

any vy Johnson Ivitloglivl+ IVIIE]

2ny 2ny Floyd -Warshall i3 / 2B oy

OPEN QuEsTion: 3 aig for APSP tnhat ruwns in time o(l\ll)z'“I ?



why Study APSP?
cuseful
- equivalent +o wany oither problem
= Cinding wneg. - weight +riangle
min - weight cycle

replacement paths problem

‘MosT -BgAauTiFLL PATH Pro8LEM”

£-10,.... 103 » use JTohlwmsowns.

JoHnsON'S ALG:

Shortes:. 346‘-’“3 2 Cownst.
PLAN: Changes SP
-l -y
L = I ~ L = I ~
o\ ~ ol ~N
) find wnegative cycle, f exists. FAILS F so. pa 3 pa 3
-9 -4
- Betimon Ford , Ivi-lE|
2) make an  edge weights non-negative & %
creweighting mmust peveserve sShoviest paths
3) use Oijks+rad from every veériex... clean ve
2 REWEIGHTING +hat preserves Suwoviest paths:
let @: Vo
]
Sy
key idea: for every veV: add @(v) +o an outgoing edges from v l}‘\'_,\>
Subtract Dv) €from an incoming edges from v O(vi=2

CLAIM: this transSformation changes weight of all uv patrks by @(v)- G(v)
® K
PF: weight of m:(Ve,v., ..., V) is Z =,y = Z. [""(""‘" vi) + & (via) - ¢{"")]
= (ZN(V:-l,V")) + ¢(Ve)-¢(Vn)

ComPuTING THE REWEIGHTING: ° .
s= fakt o
node,

3 ®B() s.+. every weight >0 for an (u.v)eE: Se—=,,~ e

o
let JIs(v) be weight of swertest s-v path O < @(u)- B(v) + wlv,v) °

define @(v)=ds(v)

Is(v), au edge weight 20

w
s (v) + W(v.v) \:’(u.v)
S. ° v

D(n) +w (v,v)

CLAIM: after reweighting by @ (v)

In

PF: by triangle inequality, ds (v)
®(v)
O ¢ G(v) - B(V) + w(d, v)

"



Jonuson's ALe: 6= (v, €) w: E->2 RT:
« add vertex S, Connected 4o 21l veV wl weight 2ero edge Ivi-)E |
suse Bellmon Fowrd +o0 look For negative cycles. FAIL ¢ Found.

‘Compute Jdi(v) from 8&ehmown Ford. reweight (v.v) i wlu,v)+ G(u)- @G(v) |EI
euse Dijkstras ABSP o Find d(u.v) Vou,vueV (Ivhiegivi +1€1) V|

~VYu,v eV J(u.v)s dlov)- @(u)+ P(v) &search every pair Ivi?

ALL PAIRS REACHABILITY: =D couvld Solve wul! BFS from every veriex

INPUT: directed grapn &  ounweighted Ivi-(Ivi+iel) = JviZ2 +1vilel « IvI?

OUTPUT: VYu,veV “reachable” or wnot Wil Shew 219 IvI¥ = 'Vlz,!vz

Mmultiply wn b:,n mairces:
naive: 0O(w3)

clever: O(nw) = O(n2-372-- )

ALG (Mun ro\

et A be 2adjacencty m2trix of 6 wl 1ds own

diagona)
suse repeated Squaring to compote A, A2, AY, AS, ..., Av! |°5llvl)
e 3 (L,v) path in G iff Al:,'v >0
OO—OE—DC
(&) &) (L]
a b ¢

o I ©° 2
A:b(é ' ')O(I\II )

c\o o ./ space & Hwme

\ 1
A%: (8 f, f‘) 9 tells you how many paths there are from veritex to verkes

RUNTIME
SQUBFing Matrix mult
loslvl + |vit — O(lVl“- |°3|V|) Wzhow Fast we €an oo Mmatrix mult.

CLaim: for aun £21, Ad.y counts # of P2ihs from UV 1ength L.

PF: by induction on £:
8C 2= by cownstruction

INO STEP: 2aSSume For L-I. the # of engH £ usv paths is:
z

el (ﬂ of length (£-1) paths Law) (:, e s )

otherw/se
2-1 - 2
= wzgnnAo.w cAuv= AL, ® matrix wolt.

TEST 2



nly

GREEOY ALGORITHMS

AcTiviTy ScHeEDuLING: A=E[s.6)3

goal: create se+ S containing activities from A s.i. no ovériap

and S is maximal Sige. (most # of acrivities)

input: 208y, [2.4), (3.6). C4.7), [7.28)3

output: Etz'")o [""7)- [7'8)3 to 2 ¢« 7

Iet A'= A without+ S, or any other activities +hat overiagp with it

Sx$S.3 is optimal in A' l—n—l
: N
*turn every activiby into veriex: . I—I

* 2dd an edge Frowm every activity a +o every activiky

* 2dd supernode Cownecting to an +asks. o
cycles impossible!
* DAG SP on weights -l. (Finding max pa+h) o
c+ €ind SP [‘longest”, most negative path)
-Covers wmost edges
£2 (w?) - we can do be+tert
GREEOY CHolcE PROPERTY 2Approach:
et 0a€A be +he ackiviky with earicest Finish +ime.
2S, optimal Solution that contains a.
ProofF: 18+ S be optimal o &S.
S=9s..S2,..., S}
Swap a fovr S. 4o ge+ S’
S's $a,Sa2.53,.... Sk}
|S'1z]S] - mos+ be an optimal Solutien. o= greedy choice

tha+ starts 2fter o Finishes

o

GREEDY CHoice PRorerTy: there’s a+ leas+ owe optimal Solution +hat cowntains greedy cwoice

Counteresx:

interval wl earirest S+art +ime: Shor+est interval counterex:

Li1.8), [2.3),03.4)

. . —

— =

another greedy Chorce:

12+eSt+ Stard +ime



GREEOY ALGORITHM:
) Sort by Finish +ime
2) make qreedy Cholce

3) wWalk fhe ISt uni’l nown-overlapping activity and add i+

4) 9o to 2

PF: claim: greedy 3alg produces optimal Solutiown. touse induckion
e+ S be an optimal Solvtion. S Starts with greedy cwoice g, # reduce greedy teo 2
let GREEON be Soin produced by Greedy Algorithm. Subproblem of i+self
let A' be activities in A +that don't overiap W g. # can Stheuw +hat its 23
Greeov \ $9.3 s optimal For A’ Subproblem
IGREEOY ] -1 2 |SI-)

“. l6Greeov) 2 ISI

ACTIVITY SCHEOULING

inPuT: A= $(t.a)3

OUTPUT: Schedule., S, +that minimizes +he max (ate +ime.
2(0) = how late, after due time, O Finishes. minz0
2(A) = max (2(a:) Vo:eA)

A= E(f:l), (2.3), (;333

v
t:01 az 3 a3 © o b d e o
S,z t J Q. ends @ |. supposed +o ewnd there. Q3 Soppose e end @ 3. but ewds .

2(s.)=3 & 1atest (6-3)

tz0 a3 3 q2 fa,0
S;:. — t

2(sz):=§

observation I there existS an optrimal Schedule witkh no idie +ime.
observatrion 2: (et S be optimal For A. I+t 0. be schedwuled First in S,
if remove a., +then S\ %2a:3 is optimal For A\fa.3

Observation 3 GCP: 3 optimal scwedule where +he ISk activity due is Scheduled Ffirst,

PF 3: |1et S be optimal schedule where a, 2ctivity ith eariiest due date, s not+ Fiest
1et b directly precede a in S. 5’ for a, R(a) in S’ improved vs L(a) in S,
let S':=S bot withh a,b swapped S'= £(L) might have gotten werse.

2(b) in S' & (&) in S.



GREEDY ALG:

") Sort+ by dwe dare C(wiogn)

2) make gereedy choice

3) go +o 2

CLAIM: greedly 219 produces optimal Strareqy, Greeoy.

PF: letr S be opkmal in A. S begins with g,

let t. be duration of g,

Gee i : i

2(ereeov\ a.) € 2(S\9.) in A\g,

agd:gg 9. adds 1ateness of 4. +o AU Activities evewly

2 (ceeeov) ¢ 2(S)

nis







g  DvynAmic PROGRAMMING

——

‘q eneraliges recursSion

+ divide 8 conquer, except overiapping problems

Loy Row PRo@rem:

ARRAY A of size n: represents a vow of coins wl positive vaives
GOAL: pick max awmount Subject +o0: no +wo 2djacent co'ns can be pPrcked.
A= [ce.Cu, ..., Cv\-l]

A: S L} 2 10 (-] 2 -2 m2ax= 17

RECURSIVE / EXHAUSTIVE SEARCH:
chooSe wot choose

S
1) decide +o wnot pick Co. = PN skip
usSe recursion to Find optimal Solukion © se ® 1

[Cq, cecy Cv\-o]
ck:ose no+ Choose

2
2) decide +o pick Co. Cannot thoose C.

use recursion on [Ca, ..., Cua )
IMPLEMENTATION
Coins (A):
Base Case: f A1 2: output Z A
s+art C | s+¢2- @ O
Else output max (Cotns (ALI1:7, ALod + Coins (A[z:'J))
[N
overlae
Hcells s exponentidl in wn
TW= T(n-1) + T(n=-2)+ 06 11)
Tin)s J2(2"2) X &stow — reduce +he wowrk! (+here’s many of e sawme branch

that+ we 2re redoing)

ME MOI2ATION

def Coins(A): linear +ime!
memoz L[None]: lenlA) Eonty geing teo
Solve each Suffix (end part)
def ce.-..-Helper(ih problem ONCE

iF i2 len(A)Y: return O
if memoli) == Nowne:
without { = coins. hetlper(i+i)
with i = ALid+ Coins _helperli+2)
memo LiT= max (with i, withoot i)
return memoli

veturn coin-helperlo’)



Pure DP SoLution O(n) runtime

memolil depends on memoli+1l & wmemoli+2]

def Coins(AN:
memo=[o1# (len(A)+2)

for i in range (len(A)-1, -1, -1):

memolilz max(memoli+i I, ALil + memoli+27)

re+tvrn memolol

SRT BOT:

S: Subproblems g
R: relatrionship b/+ Subproblems

T: Jopsort (wmust be ac«;cu‘c) -dependence b/t Subproblems = DAG

B: identify base case

O: Show how Output depends on entries of m.

T: 2nalyze runtime.

Coin Row - SRT BoT:

S: M(i) = max valve of coins we can pick From Ali:] i: O o wn-|

R: ML)z max (...) izo, n-1

T: @ach MLi) dependsS on mLi*'y, i’>
B: ml(i)zo, iZn

0: output is mLo)

T: w»vn valueS M(), each rakes O(1),

O(n) runtime

Sol=[(1]1 report ctoin choices for M[0O7]

while i< vn:
it memolid == memoli+1]:
it+zl €& iskipped
eise:
sol. 2ppend(ALi])

i+= 2
return So| & i chosen

2
Roweine Pimns R:L[1,-2,-4,-3, 107

drop 2 pin, €arn point valve
drop 2 censecutive pins, product

Ist srep: choices (what they are

D)

of values

exhaoust;ve Searcw:

A}b % DP does exhwausiive search,

: but+ doesn't have +o be

memols]= 2
memo (U= 6
memo [33:z 12

wemo t&j =

exponential RT

n_distinct

MAxim € Scovre

Svbproblems



nizo 174‘

LONGEST Commoa SuBSEQUEANCE:
input: A, 8 Strings A: GoozicLA

owut: wr, (en of LLCS 8: GHIDORAH

GDA
GlA -] ovF m=3

if ISt char same- if Aflol == 8[o): I+res(Af:1, 8L1:32)

2lways ces(ArDi:3, 8) retorn max of these 3 5 s is exponential. we wank
to come up W/ memo So weé
2lways tcs (A, gl1:]) dovn't recomputre
f ————
J compute i MU, ;) is Neowe:

Hhisway MU(i, j) = max of

bl jo00
epend welplitl, j#1)+1 € ACLil== BL;3J

help (i+t.3)

hetp (i, j+0)

retorn MU, ) RoumTIME: O(1Al-181) quadratic!

S: M(i,j) is length of LCLS of Ali:]), BL[j:] uvhere OSic|Al, Osjs (8]
V\+Mm(i+l j+1) if ALid==8Li)

R: MU(i,j)= max ;:2%:73’;")]

T: increasing i+j (never read uninitialized indices)

B: 0, wnheve j>18) or i>slAl

0: mlo. 0) % can reconstruct LCS by walking diagonally olown
+He +able

T: O(1A1-181) &size of +2ble

OSSP: correctness:

1: AL1:), BL1:) f we have optimal LCS. +then I+Lcs(Al:]), 8L1:]) is optimal wi A[01=:8[e]

2: Af1:), B: if we have opi:mal LCS, +hen optimal 2mong soims +hat didnt pick Afo)

3: A, BLI']: if we have opiimal LCS, +hen optinmal 2mong soms +hat didnt pick [IX-D]

LONGEST |ACREASING SuBSEQUEANCE:

input: array A of iategers Ex: A=[8.6.7.5.3,0,9] # For €2ch val, Choose or not
out: length LIS out: 6,7,9 = 3 (1en)
defavlt

LIS(A, w(=-e0));
if A is empty: retrurn O
1+LIS(AL1:),AC03) if A[0) > w
retorn max LIS[ALi:], w)
indéx-'l:j A

indexify W j (define A[-1] = -o)



P ML) 1ength of LIS of ALit] ! 21 numbers > ALj]
1+ M+ §) L. )

3
tM,§): max (. mli+l, ) n % don't c2re 2bouvt w  itsel€.
Pincreasing i (Start from right end)
s mOiar, ) v

S:o
: mlo. -1)
: O(1A12) % have space 3 {ime optimizations

* M), 1en of LIS of ALi:] tua+ begins Wl AL, Os= i <]AI
L/M-\
P MUi) = 1+ max § MU) weere > and ALj1> A3 I
: increasing ¢ (onty looking @ Suff:xes)
: no base case! (there is no j >i)
L max in M set ACkl-> MCk)
What ¢ we used 2z range query [(implement using Ave BST)
o (1a12) 2ugment w/ max
P implement M using AVL 8ST augmented w/ max.
S maps ALk)-> MLkI in O(leglAl) 4ime

walk back 2along input: |Al steps

O (1alioglAl)



nlas| DynAamic  PRoGRAMMING TL:

Shortest paths uSing DP, DP uS‘wg SP aigs

Subpaths of SPs are SPs

‘cut and paste”  arq O @ D~ O

¢ ?

Shortest Patw

DAG Single-source SP:

S: T(v) = d°(s.v) For 21 veV

:@$:U-.v):$
R: —'® T(V)= m-'ni'l'l“)*w('-'"') for MéAdJ'(V)i
-~ /;'
T: topologica\ Sort/ovder
SSSP for General Grapws: Bellmon Ford s -
s)o O -0
S need +o handie cycles 8 neagative cycles ®-+0- o .
o O-=O
Compute Shortest Pa+hsS +hat are resSiricted (o)
s
s ;@0
+ ingle ed — S
© 2 Sing edge ® — ®0c
£ k-edge Shortest patns Kzlvi-t

lvi-i_edges - tonges+ Simpie pat

dremember how many cycleS used So fFar 25 We buildd parhs

S: T(v.k)= weight of SP from S +o V USing 2+ most k edges for VeV,
weight @ most k edges fer veV, k€ $0..... min(Ivi,1€141)3
Linpl‘.es cycle

R: for every v 8 k, guess +re (25t edge vsed in path of (ength k, or +ha+

vse £ k-1 edges

min §T (v k=1) +wlu.v)23 wEAd)(v)

T(v.k)= min & T(v, k-1)
T: depend on entries wl smaller k
B: T(S.0)=0, T(v.O)=°90 for V&S
O: Simple path can have @ most Ivi-l edges

if fFor Som@ u We have T(u, Ivi)<T(u,lvI-t), we have wrrness

for a weg. cycle. otherwsse, I(S,w)= Tlu,lvi=1) = T(w, Vi)
T: olivi-1gg)
All Pairs Shortest Pa+hs dense graphs: EzO(Ivi?)
Bellmon Fowd DP : O(IVI2IEL) 8F:

K+l iteraions

Johnsons: O(Ivizioglvl +IviIEl)

compare Vil iteration (Find witnesses)

©,

l Voav,» U2

(O]

its best +o

GoAL: make dense grapn O(Ivi3)
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Feovo- WARsShALL DOP

> restrict P3ihS +o be withm 3 Subset ofF V. ignore negative cycles

vi v;
®~~® ® ® verticeS are 3l nuwmbered O +hrough Ivi-i. O intermediate

w(v,v) =0 for 211 Vv ex: $£0.13 €vo, V. ex: @@ no intermediate vertices §3
O @ ® ®..@§..®
i3 3

wluv)zoe f (v.v)é E

S: T(k,U,v) = min weight Path from u +o v through vertices in $o.1,...,k 3
O 1,00,k O,1,:000 k=)
M@
if k2O no intermedrate ver+ices alnowed. Single edge f it exists se se
T(k-1,0, k) +T(k-1,k, V)
B orco T(k,0,v) = min T k-1, 0.v)

B T(o,w,v)=wlu.,v) Foranov & v
Gut=1)iviavli = 0 Ivi3)

T Tie:.- ) for no neg.
@\‘_/’@ T(.u,v)s min cycies
T®F
DP IZ, subsef sum
SANDOWICH CUTTING:
e v(R) maps +o valve Ft2,...,L3
¢ Sandwickh of 1w L
e +ask: odivide wvep SO as +o wmaximize +total value
Ex: \, 10, 13, 18, 20, 3, 32
£12 3 4 5 & 7
+2
10+10+13:33 N+(=32
wh2t iS ISt choce?
-Pick where to make ISt cut #length S changing - - P2rameterize by lewugth

- if we cut k incwes, vik)+ sc(v, £-k) inpus: (L.v) Size L+t
Lrepresented 2s vl viz), ..., V(L)
S: scl(e)=max vawe from Cutting length £ OsRslL
R: Sc(R):=wmax V(ki+ Sc(2-k)
15K Q

T: decreasing £ (depends on L£'<¢g)
8: sc(o) =0
0: sc(v)
T: O(c2) L SPs, O(L) eacnw

(quadratic in input Size)
PoLy TImE: bounded by polynomial in ineut size

PSE€vpoPOLY: bounded b'! potynomial in input valves



SuBSET Sum:
positive

cinput: Azla., 0z, ..., an), len L

s outpur: YES iFf is 2 SubsSet of A with Sowm L
ex: A=l2.s.9.8.47, L:212 ves (s.2.9)
L=2S? No

Decision ProBLEm: outpur iS binary (TIF, viN, etc)

e do we include QAun? A'=s [a......au.]) L'sL-an

S: SS(i,t')= yes #¢ +here ¢s 2 svbset of AlL,...

SSli-v, )

L) with

R: SS(i.ut7): ongssu-., L'-a;) & incwde onty if vald

T: decreasing i

B8: Ss(:.0) = ves
Ss(o.t')=no ¢ L2 O
Ss(i.t')=no if L'cO

O: sS(n.0L)

Sum L'

T: o(n) SPs, 00 each, O(nL) +otal (2" reachable SPs)

CAN WE DO BETTER?? nobody knous!!

if_so, we'd get efficient aigos Ffor 3l _kinds of problems, @.9.

PAarTiTION:

cinput: [a,, a3, ... an)

cOvtput: YES (F en'stsS a3 bipartition of A nith equal

Lo N
Reouce To SS:  AmM (A, TZA) pseuvdopoly w! SS alge.

(ALY A+ [Le, ZA-L +1]  goes into o ff nalves of pactiion

ANEGATIVE SUBSET Sum: 2llovwed neg. vals in A as wen

Ex: A= [-_l,_q, 7.0.0, o] L=3 &EFill in remainder
l, 6,9, 2, 2, 2 L'=q
— T | =
M1, MY, .. , Im L:3m+3

pseudopalg ' M= poly inpout.

Sums

wl O's ¢

Osifn,

weeded

"

”»n



1274 last lecture:
* psevdopolynomral time
* @quiv. Subselr Sum, neg. SubSer Sum, partition
today:
‘decision Problems, Complexity, classes, P vs. NP
NP-havrdness Beirer inaw O(nr)
wh2t 2bout longest Simple patrh?
computationa) vs. relakve COMNCN'Jy
compare APSP vs. longesSt path vsS. subse+ sowm

Sorting | Olnt) | O(niogn)

scc O(nt) | O(nam)
Subset
Sum o(z“) DL“L)

Decision: given Some input. oloes it have Some properiy
20 of #hese

can be SEARCH: §iven input. Which defines 2 Search space, ovtput 2 valred element

reduce

to WS . .
OPTIMIZATION: §iven input, ConsSiraini, cost Function, Cutput D Soln hich wminimizesS/ maximizesS cost

FuncTion: given input. compute some owtput  (main, counting)

MIN WEIGHT S-T PATH:
INPUT: grapw 6. wnodes s-+
OUTPUT: weight of miaimum S-+ path

DEcision: bLrapn 6. S-¢, int k=2 does +heve exiSt 2w S-+ path W/ Weight < k

s

o 2 X% w exponential +ime D(ZP°'5‘"‘)

| X T K ] ]

I 1
COMPLEXITY CLASSES: P, NP, EXP TIME A: moSt watural have Small  exponeniss. O(nl) APSP
P: e2sy & efficient: soweable in Olporytn)) 8: Strong (hurch Theory Thes's: 2nd S

O(~) olnt)  O(neizie)  o(n'es!>sn)
v v v x
SUBSET + LOMGEST PATH

ceasy o verify

S VERWFIER Vix.C), x iS instance, C (s 2 witness
i€ x S NYES, +nere exists C s.b. V(x,c)=T
-if % s NO, For 20 ¢, Vix.c)=F

V _wmust run in  poly time

Icl = poiyln)



Ex:

verfy

SuesSET Sum
Cz 1St of numbers

V= sum up the Iist. Checess

LONGEST PATH SEARCH:

C: 2 path

Vzis C 2 vawved path? is lcl 2 k?

P s NP NP S EXPTIME
c =€ number of c's = O(2P°"™)
V= 3a\go. loop over an ¢ if vixie) =Truve = 2accept/return Ves

O (2°P°'3™") . O(potyiny)

much bigger v

P Exe. Timc

€ NP €
7

2+ 1e2S+ one IS Stevcet

we belreve P EANP

ReoucTiONS:
A<B8 weans A reduces +o B8, Asp 8

-8 s 2s havd 25 A,

- 2lgorithm Ffor B8 soives A -i¢ B €cpP,

NP-HARD: for 218 AENP, Ao B, B is NP-hard
key: B8 is 25 hard 25 everything in NP

N P- compLeTE: if...

e in NP

* NP-Hard

PJnNe _ we NP-ward gy prime
IMN

l t {
Nec

CanoNicaL PROBLEM: SAT
input: boolean func (r))

output: does +here exist Assignment X s.4. Olx)=T

does #here €xst 2 C s.b.

vsuvahy binary Strings

then

A s

e

Vix.¢) = Trve

- poly +ime 2algo. for B8 SolveS A in poly +ime



i +there exists d poly +ime 219. for 2any NP-C problem > P=NE

*P#ANP D tnere does not exist poly +ime 2algo For any ANP-C problem

2 WOoRLDS:
1t automated theorewm pEroviag
cP:=NP 3 2: public key encryiren FAILS

< P*NP 3 pest 2°M

« NP hard s wWors+ case
°c dppro x.

*SAT solvers

12/9 CoOmMPUTABILITY: What IS uncomputable?
TurinG (1936)
I What is an algorithm? Tuv'.'na maching linear
90(5
2. What 'S computable? wwwat problems have 319sS? Cxpon.
3. what (S ouncomputable?

SET Ue:

- §0.13% = set of 21 bitsirings

c Program = bitstring (@x: Pyihon in ASsCIt)

-input 25 bitstring in fo.13"

. deciSion probiem is just 2 Fumciion $0.13% — §o.13

input YESINO

- def: PRoGRAM P computes £ if Vinputs x€30,13%, Pln)zF(xn)

L P 2luays returns output [PHaIES") function £
in ovt
:

n =
2% e, 2 22

Life is unfair: {here 2re more problems #H.aw Soluiions.

Fact: +there exis+ Ffounctions £: io.liz“-; iO.'S’ that cawv't be computed by any 1ength " program

2n
Pe: thece are 22 Such Ffuncirons F. if 2 program computes F,
i+ doesn't compute any otwer
2" witstrings of 1engih w. fn €.

= by pigeonncle= 3 some fn S.+. I program 1@ngth n  1hat Compuies it.

2" oocoo
fones | | Jal lelele]l T 1 ] 1 2% eunes. oo o
1 T 2™ Sir. 18n.

2" itemS/programS H R one woll s Cmpty
funcs



there ace ‘natural” problems wl/ no 2lg Soin/no program that computies them.

HALTING PROBLEM:

input: binary String interpreted as a pair (P x)

>P 25 & program (Pvithon prog. in AScH)
program Fakes

DI x A8 inpui
2 program a5
input
ovtput: YES if P on input x HALTS. no otwerwise.

THm (TuRING): no 21§ Compuies HALT (*Haik is undecideable”)
PF: by cContradiciion. Suppose you have 2alg. that compuils HALT.
define program P(x): ¢ Hlx.x)=vyeS = loop Forever
otherwise = output yes

if we cun P(P):

i€ W(P.P)=yes, loops forever [l if PLP) halts. P(P) doesn't walt.
CONTRANLICT!

otherwse, output Yyes It € PLP) Jdoesni hale, P(P) halrs.

OIAGONALIZATION:

inputs x
O 1 Q0O ...
o PN~ #diagonals are J:fferent
programs | . MIILNIY
e

Cl

cthere can exist programs that solve HALT on Some/many inputs
Hrun for L day, output unsure’ i€ SHIL running

# if _python prog. Lons'st of oniy 1A, +, -, 4.

ﬂ> TOTALITY: +akeS program Q as input

output: yeS Ff Q@ wnalitS on 2l fapuls
no o+herwdse
THM: dot3lity iS  undecidable
PF: towards contradiction, 2Ssome alg T compiies +otdlity
Q(y)

+hen here S Halting 21g:  H(P.x): oleEine program Q:= Yignore input., cuns P(x),
9

refurn T(Q) € Iobalby Dlg.
Claim: H competes Halt. DE
) P(x) hai+s = Q Walts on 21l _inputs > T(G) = yes v

2) P(x) doesn't Walr > Q doesnt hald D T@:Ae v

owtput+sS VYes '



Equiv [‘Program equivalence”)
- +akes programs P.Q as input
s outpuss YES & VUx Plx)= @(x)
NO otherwese
THM: Equiv. S undecidlable
PE: by contradiction, assome E computes Equiv
consider H(P,x): defnes Q= “igaore inpul. rua Plx), ouviput VES”
defines R: ‘iqnore inpuvi, output ves"
retuen E(R.R)
Claim: H' computes/soives Ha.r
Plx) Walts =5 G outpuss “Yes” 2 Equmvi@.r)= tvyes”
P(x) doesnt halr ® Q loops Forever, R doesn't = Equiv(@, R) = “No ™
ONDECIOABILITY IN UNExP. PLALES:
1) testing whether moultivar. poly €quation wl int coefeé hasS an int. soln. x3¢ 1243+ 220

2) vuether 3 String S CompreSsible given Siring X 2AS input, iS there lengtl-L program +hai outpuls?



