

t.IE i i i reason

LINKED List us List
linkedlisttupleoftuples is immutable

regular list haveto copybefore copying
lista takes longerthan linked list I

Set for into list 2 vs linked list 1343203

linked list hard to find true ten lentist tenlinked list 2

6.101 Recitation 11: Iteration and Recursion with Linked Lists 10/21/24

1

Question 1: For today’s recitation we will define an empty linked list as None, and a non-empty
linked list as a length two tuple of (element, linked_list).

Complete the environment diagram to represent the execution of the code below.

lsta = [1, 2, 3]
lla = (1, (2, (3, None)))

lstb = [3]
llb = (3, None)

lstc = []
llc = None

Question 2: Fill in the body of the functions below:

def first(ll):
 """
 returns the first element of a non-empty linked list

 >>> first((5, (10, (15, None))))
 5
 """

def rest(ll):
 """
 returns the rest of a nonempty linked list
 (omitting the first element)

 >>> rest((5, (10, (15, None))))
 (10, (15, None))
 """

Why would these helper functions be useful?

GF

lsta

lla

lstb

llb

lstc
llc

Stack Heap gifted saterlooks like trees

lista

linked

tuple

none

importdoctest

94 gs to be aware of

return eelo providesdocumentationAndtesting

1 1 doctests or pick

return ee 1

good for clarity

6.101 Recitation 11: Iteration and Recursion with Linked Lists 10/21/24

2

Question 3: Implement the following functions recursively, and then iteratively:

def ll_len(ll):
 """
 get the length of a linked list

 >>> ll_len(('a',('b',None)))
 2
 """

def ll_get(ll, i):
 """
 get the ith element of a linked list

 >>> ll_get(('a',('b',None)), 1)
 'b'
 """

ITERATIVELY
count o
while ee is not none HOWDOESTHIS NOT

a

MUTATE ee

base feet Jie if not ee
Fftp.e jfft fctgg

return 0

recursion return 1 ee ten een or return 1 ee
lencygy.gg on

i.ie iiaiis noness 2

It Fen b none

it
en none
0

RECURSIVE a tests In Eening

I E'EEiiiiia.is ae si jie aiaeiiistsi.ins i

1 fifteen
return first ee

return ee get rest ee i 1

ieigiiiifienc.ee
if s I fiiifdi.siindex originalis out of range
return helper rest ee i i

def e i
HOISTING having recursive stuff in

separate functionite

10 23 24

hnn'e'sw'e'e eEPobthTs ots of nested lists linked lists good for nested structures

inherentlyrecursivestructure easier to split
lista makesnew copy while linkedlist is does not makecopy
linked list immutable
Lisp implements linked list

6.101 Recitation 12: Iteration and Recursion with Linked Lists Part 2 10/23/24

1

Question 1: Implement the following function recursively, and then iteratively.

def make_ll(*elements):
 """
 given an arbitrary number of elements as arguments,
 make a linked-list of (first,rest) pairs

 >>> make_ll(1,2,3)
 (1, (2, (3, None)))
 """

Question 2: Implement the following function recursively, and then iteratively.

def ll_concat(ll1, ll2):
 """
 return a new linked list that concatenates two linked lists

 >>> ll_concat(make_ll(1), make_ll(2,3))
 (1, (2, (3, None)))
 >>> ll_concat(None, make_ll(4,5))
 (4, (5, None))
 """

ordermatters
make.ee n elements make_ee 1,2 3 n i elements 2.3

e c.si i i

elements 12,3
make.ee 2,3 who star

Egg mentee if
elementsisemotslist as

return elements o make_ee elements i

ITERATIVE
ee none

forget.net eaceEiEi
mtensETaoes

returnee

NOTE test nestatements

RECURSIVE

if ees is none
life

3 none
return lez

if eez is none
returnee elz

mainder ee concatcrest eez eez
return first eet remainder

rem

none

such
messier

for i in reversedrange ee ienceel
new ee ee getcell i new le

return new ee

6.101 Recitation 12: Iteration and Recursion with Linked Lists Part 2 10/23/24

2

Question 3: Implement the following function recursively, and then iteratively.
def ll_reverse(ll):
 """
 return a new reversed linked list

 >>> ll_reverse(make_ll(1,2,3))
 (3, (2, (1, None)))
 """

Question 4: Implement the following function recursively, and then iteratively.
def ll_elements(ll):
 """
 return a generator that yields each element in a linked list
 >>> ll_gen = ll_elements(make_ll(1, 2, 3))
 >>> next(ll_gen)
 1
 >>> list(ll_gen)
 [2, 3]
 """

Mso far none

RECURSIVE

if
7 none
return ee reverse rest ee first ee so far

ITERATIVELY

new ll None

whiffie cent can'tdo for loop
el rest ee or else wouldjust be a linked list then stop

return new el

GENERATOR play pause button
yieldsthen will keep playing
NOelement is retuned until
next is calledwhiff tell generator is createdthenstaysthere

ll gen ll elementsmake_el1.2.3
generatorobject doesn'tshowobject

print next ee gen forcesee gento run untilyield

isaaasmen.comtorsisies

iiiFiii seamen anions.ee

RefactorProcess
iunderstand
amakeaplan
3 implementplan
uslookback

6.101 Recitation 13: Mines Wrap-up 10/28/24

1

Question 1: What strategy did you use when refactoring the 2d-version of minesweeper?
def dig_2d(game, row, col):
 if game["state"] == "defeat" or game["state"] == "victory":
 game["state"] = game["state"] # keep the state the same
 return 0

 if game["board"][row][col] == ".":
 game["visible"][row][col] = True
 game["state"] = "defeat"
 return 1

 num_revealed_mines = 0
 num_revealed_squares = 0
 for r in range(game["dimensions"][0]):
 for c in range(game["dimensions"][1]):
 if game["board"][r][c] == ".":
 if game["visible"][r][c] == True:
 num_revealed_mines += 1
 elif game["visible"][r][c] == False:
 num_revealed_squares += 1
 if num_revealed_mines != 0:
 # if num_revealed_mines is not equal to zero, set the game state to
 # defeat and return 0
 game["state"] = "defeat"
 return 0
 if num_revealed_squares == 0:
 game["state"] = "victory"
 return 0

 if game["visible"][row][col] != True:
 game["visible"][row][col] = True
 revealed = 1
 else:
 return 0

 if game["board"][row][col] == 0:
 nrows, ncolumns = game["dimensions"]
 if 0 <= row - 1 < nrows:
 if 0 <= col - 1 < ncolumns:
 if game["board"][row - 1][col - 1] != ".":
 if game["visible"][row - 1][col - 1] == False:
 revealed += dig_2d(game, row - 1, col - 1)
 # ... some code that was copy / paste / modify omitted
 if 0 <= row + 1 < nrows:
 if 0 <= col + 1 < ncolumns:
 if game["board"][row + 1][col + 1] != ".":
 if game["visible"][row + 1][col + 1] == False:
 revealed += dig_2d(game, row + 1, col + 1)

 num_revealed_mines = 0 # set number of mines to 0
 num_revealed_squares = 0
 for r in range(game["dimensions"][0]):
 # for each r,
 for c in range(game["dimensions"][1]):
 # for each c,
 if game["board"][r][c] == ".":
 if game["visible"][r][c] == True:
 # if the game visible is True, and the board is '.',
 # add 1 to mines revealed
 num_revealed_mines += 1
 elif game["visible"][r][c] == False:
 num_revealed_squares += 1
 bad_squares = num_revealed_mines + num_revealed_squares
 if bad_squares > 0:
 game["state"] = "ongoing"
 return revealed
 else:
 game["state"] = "victory"
 return revealed

neckvictory Isameisoverdonothing ifgaestate ongoing

I c

samestatecheckdon'tneedtodoitbefore

visibleval

boardv21

inis Ties issuethe oen
outsideofloopalreadysettingvisibleboardtotrue

t.ie i
combiningoob
conditionw
gettingneighbors

ifgameboard r c

3ʳᵈ not 98m sb
return revealed

Eliciting

newgamend
ᵗˢ

I ssmting aset it takesa longtime as longas
elements inset

net mineinmines

storingvaluesusfunctioncalls

6.101 Recitation 13: Mines Wrap-up 10/28/24

2

Question 2: What are instances of tree-like, graph-like, and list-like recursion in the mines lab?

Question 3: Below is a recursive all_coords function that returns a list of tuple coordinates.
Modify the code below to make this function into an efficient generator.

def all_coords(dimensions):
 """
 A function that generates all possible coordinates in a given board.
 """
 if len(dimensions) == 1:
 return [(x,) for x in range(dimensions[0])]

 first = all_coords(dimensions[:1])
 rest = all_coords(dimensions[1:])
 result = []
 for start in first
 for end in rest:
 result.append(start + end)
 return result

List Like

1
I
I n'sf neighbors if the getsetvaluetopeeloffthe1 4

I

1 boardvalue is 0 1stcoordinatedimension
i firsticooracos restwords

It III EEi aemeisne

getancoordinates
board is treelike eachdimension
is a separatesubtree

103024 BACKTRACKING

EE IE II
2 m eth.EETe fill inblanks

3 implementtheplan code

a look back optimize

6.101 Recitation 14: Backtracking 10/30/24

1

Question 1: You ordered food from SuperEats for you and your friends. SuperEats delivered a
variety of entrees with varying quantities. Your friends have given you their unordered
preferences for which entrees they like. As the host, you are trying to determine a way to assign
the delivered food to your so they can all get one of their preferred dishes.

No solution example (there is not enough food for everyone):
people = {'alex': [‘Acai’, ‘Burger’],
 ‘bob': [‘Burger’],
 ‘cam’: [‘Burger’, ‘Salad’]}
food = {‘Burger’: 2, ‘Salad’: 0, ‘Acai’: 0}

Solution example (alex and bob can get burgers and cam can get a salad):
people = {'alex': [‘Acai’, ‘Burger’],
 ‘bob': [‘Burger’],
 ‘cam’: [‘Burger’, ‘Salad’]}
food = {‘Burger’: 2, ‘Salad’: 1, ‘Acai’: 0}

Discuss with someone around you how you would approach solving this problem using different
graph search methods:

- brute force search
- BFS
- DFS
- Backtracking

satisfygettingthefood

generateallpossibilitiesthencheckeach

similarto DFSbut w constraints

b b recursionhas DFSfunction

a a B

a B bB

YEERCE
exhaustive

explore all fooditemsppl

BFS
removenodesfromopposite
sides of agenda
exploresshortestpaths1st

Pebiorecurrentthenbacktrack

I IE ezEti
Items c

timingdown

goodforproblems w constraints

6.101 Recitation 14: Backtracking 10/30/24

2

Question 2: Fill in the body of the feed function below.
def feed(people, foods):
 """
 Given people who are hungry and the available food supplies, find a mapping
 from people to available foods they prefer if one exists.

 Parameters:
 people: a dictionary mapping a name to a list of their preferred foods
 food: a dictionary mapping available foods to their quantities

 Returns:
 Dictionary mapping person to assigned food if there is enough food to
 match everyone's preferences. None otherwise.

 >>> people = {'alex': ['oreo', 'chocolate'], 'bobbie’: ['vanilla']}
 >>> feed(people, {'oreo': 1, 'vanilla': 1}) == {'alex':'oreo','bobbie’: 'vanilla'}
 True
 >>> feed(people, {'oreo': 1, 'ketchup': 1}) == None
 True
 """

if nothing lefttosatisfy success
if not people
return 3

chooseonethingtosatisfy

ist
strainedperson in ten

lookthroughchoicestosatisfy

forfoodinpeopleperson foodhasto be inpersonpreferences
non zerofood
if f 0 preventskeyeror defaulto

new_people Ep f for pit inpeopleitems

ifresultisnotnone success

resultperson food

1114124

sat
assignmentwebacktrackingrecipe

optimizing
pronetree
avoidcycles
avoidextracopying

f 10 or b or c and b or not a and notb CNF

i.EEi a

computers not
fast

enough

L moniesSA
ua a true

it er
as.co fzÉTt es testat be

npgtstrmtiffnj.gge
miot

as backtrack I p nkca.cn
INEFFICIENT bc unitclauseBFmustwork me

loopthroughunitclausesorthe tie ofshortestclauses

I iiitiiiiii.ie

Y Em's.ess isforloor sieid
for 3 gets1 2 3

yieldfrom1.2.33 alsogets1.2.3

yieldreturns a singlevanfromgeneratorfunction

yieldfromyields all valuesfromiteratorigen

6.101 Recitation 15: SAT Solver Wrap-up 11/4/24

1

Question 1: Applying Polya’s problem solving method to satisfying_assignment:

1] Understand the problem
- What are the rules / constraints of satisfying_assignment?
- What are we trying to satisfy?
- What kind of decision tree do we end up with?

2] Make a plan
- How do we apply our general recipe for backtracking to satisfying_assignment?
- Will we need any helper functions to be useful?

3] Implement the plan

4] Look back
- How can we optimize this search?

Question 2: What is the result of calling satisfying assignment on the formula below? How does
using the unit clause optimization make solving this formula faster?
formula = [
 [(‘a’, True), (‘b’, True), (‘c’, True)],

[(‘b’, True), (‘a’, False)],
 [(’b’, False),],
]
result = satisfying_assignment(formula)

format

tÉ a things s.fimIppaffiauantitssimilar to room to

refereeease men is sisniitnaIfunctionforrulea persononefoods rule3 atmoste

it Isn't n
one

peoplefood value in resultitems's
if V3sinpeople food

return assign

6.101 Recitation 15: SAT Solver Wrap-up 11/4/24

2

Question 3: How can we solve our potluck from last Wednesday using satisfying_assignment?

Question 4: implement all_combinations as a generator function
def all_combinations(elements, N):
 """
 Given a list of hashable elements (with no duplicates) and N
 (the size of each combination), make a generator that outputs
 length-N tuples of all combinations of the elements

 >>> sorted(all_combinations([1, 2, 3, 4], 0)) == [()]
 True
 >>> sorted(all_combinations([1, 2, 3, 4], 1)) == [(1,), (2,), (3,), (4,)]
 True
 >>> y = all_combinations([1, 2, 3, 4], 2)
 >>> sorted(y) == [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
 True
 >>> z = all_combinations([1, 2, 3, 4], 3)
 >>> sorted(z) == [(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
 True
 >>> sorted(all_combinations([1, 2, 3, 4], 4)) == [(1, 2, 3, 4)]
 True
 >>> sorted(all_combinations([1, 2, 3, 4], 5)) == []
 True
 """

withgenerators
thinkaboutwhatyou
want to append

EE

iiiiiiii iiiiiiiii.ie

I first elementscos
rest elements i

yieldfromancombinationscrestn
all combos all_combinationsrest nforcomboin all combinationscrest n i

yield first combo for comboin an_combinationsrest n t
an_combosoppenalifirst combo

return all combos

WHILE In fee a variable

whenprintobj in a class calls str
repr also

6.101 Recitation 16: Classes & N-Body Physics Simulation 11/6/24

1

Question 1: Today we’re going to build a planet physics simulation (see video.) Discuss with a
neighbor: what classes would be a good idea to implement? What attributes and methods should
each class have?

abstraction planet simulation

Tiltti ICE a E at

x ̅ 1 x ̅ t PILE at

a t F 97,7ft
CLASSES ATTRIBUTES METHOD
Planet

yg.fm tff fossametersplanet list of
velocity other planetsapplying F

simulation list of planets apply timestep at

vector nd word list I
itmitoses

6.101 Recitation 16: Classes & N-Body Physics Simulation 11/6/24

2

Question 2: Fill in the missing code below for the following Vector class methods:

class Vector:

 def __init__(self, coords):
 # each Vector object has a nd tuple of coords

 def __repr__(self):
 # repr(Vector([0, -4])) -> 'Vector((0, -4))'

 def add(self, other):

 # Vector([1, 2]).add(Vector([1, 0])) -> Vector((2, 2))

 def sub(self, other):
 # Vector([1, 2]).sub(Vector([1, 0])) -> Vector((0, 2))

 def scale(self, other):
 # Vector([1, 2]).scale(5) -> Vector((5, 10))

 def div(self, other):
 # Vector((4, 2)).div(2) -> Vector((2.0, 1.0))

 def magnitude(self):
 # Vector((3, 4)).magnitude() -> 5.0

 def normalize(self): # creates a unit vector in the same direction
 # Vector([3, 4]).normalize() -> Vector([.6, .8])

Get fan s

self words tuplecords

return F self class_ name selfcoords

If tinstber
returnvector its for i s in zip selfwordsothercoords

returnvector i i for i s in zip selfwordsothercoords

returnvector itnumfor i s in selfwords always ask
what is input output
type

returnvector
ÉnumÉÉ

in seacoorass

Eturnself scale inum

return sum ÉÉ self coords 0.5

return self div selfmagnitude

CLASSATTRIBUTE stored inside class
ˢbot

eggs
share the

instance

6.101 Recitation 17: Classes & Inheritance 11/13/24

1

Question 1: Eat That Sock is a 2D game where a human player competes with a bot to see who
can score the most points in twenty seconds. Players score points by collecting socks. Socks can
be different colors, with each color corresponding to a different point value. Socks randomly
appear in the game, and also randomly disappear if the players don’t collect them fast enough.
Walls keep the players and socks in bounds.

Discuss with a neighbor: What are the different objects that we would need to represent this
game? What attributes and methods would each object need?

For example Game:
-Stores all other objects
-Keeps track of time remaining
-Each time step:

Moves players
Makes socks appear / disappear
Renders updated game board

-Decides winner at the end

think of classes subclasses like

a tree parent root node

child is a lower node

Sock
position row coll Imagental
1555

yellow green
symbol

points red 1 green 2 yellow 3
render

TTL time until dissa pear according todo

randomly change dir
Player eats socks

Trandom wall
symbol position

color whiterender
score symbol
change dir wt key render
move according tocurrent dir doesn't move
eats socks can't intersect w otherobjects

i

6.101 Recitation 17: Classes & Inheritance 11/13/24

2

Question 4: Look at the blank Bot class shown below. Fill in the missing body. If implementing
a method would be unnecessary, cross it out instead.

class Bot(Player):
 """
 A basic bot that randomly moves around the screen.
 """

 def __init__(self, position):

 def update(self, game):
 """
 Given the recent keys pressed and the current game, update the object.
 """

 def render(self):
 """
 Takes the state of the object at the end of a timestep and displays
 it to the screen.
 """

color magenta

directions Gameup cameDownGameLEFTGameRIGHT
selfdirection randomchoicedirections
Playerupdateself game

6.101 Recitation 17: Classes & Inheritance 11/13/24

3

R17 Participation Credit Kerberos : ________________@mit.edu
Hand this sheet in at the end of recitation to get participation credit for today.

Question 2: Look at the blank Wall class shown below. Fill in the missing body. If
implementing a method would be unnecessary, cross it out instead.

class Wall(GamePiece):
 """
 Static game piece represented by a white "#" symbol, which prevents
 pieces from going out of bounds.
 """

 def __init__(self, position):

 def update(self, game):
 """
 Given the current state of the game, update the object.
 """

 def render(self):
 """
 Takes the state of the object at the end of a timestep and displays
 it to the screen.
 """

symbol
on white

don'tneed to implement

8 it fits népiece

print Toctsi.sn seif8osfoPn seifsymbol self color

6.101 Recitation 17: Classes & Inheritance 11/13/24

4

Question 3: Look at the blank Sock class shown below. Fill in the missing body. If
implementing a method would be unnecessary, cross it out instead.

class Sock(GamePiece):
 """
 Static game piece represented by "s" that is visible for ttl timesteps
 before disappearing. Socks come in different colors, and each color is
 worth a different number of points. Players earn points if they intersect a
 sock before it disappears.

 Created by the game at a random position, initialized with a random color,
 disappears randomly.
 """

 def __init__(self, position):

 def update(self, game):
 """
 Given the current state of the game, update the object.
 """

 def render(self):
 """
 Takes the state of the object at the end of a timestep and displays
 it to the screen.
 """

symbol is
coloroptions red 1 green 2 blue 33

IT it ceased
Gamepiece init self position
self H random randint 10,20

EEE in
same code no matter what object

111824 symbolicalgebralab classesinheritance

GENERALPURPOSE Toolbox classesfunctionsdatastructures

Niche Toolsbacktracking

te

don'twant tohave to have manyclasses manyif statements

ex vari x 5 add

5 var x radd

in EACHBINOP subclass add sub deriv etc
simplifymethod

eval method

sebre p
so

1 5 x 5

5 9 59

comments 5 ignore rest of line

TOKENIZE

asciiq.IEnreEne'stest nEnges

keeplookingfornumberin next ind

eignorespaces

6.101 Recitation 18: Symbolic Algebra Wrap-up 11/18/24

1

Question 1: Discuss with a neighbor: What are the pros and cons of using classes (as opposed to
implementing the same kind of behavior using builtin datatypes and functions)? What are some
real-world applications of classes?

Question 2: Discuss with a neighbor: What are some real-world applications of inheritance?

Today we’re going to think about how to implement a variation of make_expression that has:
- nonnegative integers, like 3 or 10
- single-letter lowercase variables, like x or y or z
- fully-parenthesized binary operators, like (3*x) for +, -, /, and *
- no extra parens or missing parens
- ignores spaces

Question 4:
make_expression(“ ((3 * x)+(10*y)) ”) => ___________________________

CLASSES vs Functions Bulletins

t.is piicitbenavion
understand

v vz attn

g
hitying mg age

more work ode to overwriteimplicitbehaviors 3

many sharedbehaviors attributes bit things soundpieces animals etc

Ex instead of implementing sounds as dicts class sound MonosoundStereosound

Add Mul numb var x Mol nom lo var ing
tokenized split into chars in list
parsed

var Numare leaf nodes g

6.101 Recitation 18: Symbolic Algebra Wrap-up 11/18/24

2

Question 5: Discuss with a neighbor: How would we go about tokenize?

Question 6: Discuss with a neighbor: How would we go about parse? What recursive pattern
are we using (list-like, tree-like, graph-like)?

def parse(tokens): # tokens is a list of strings

Bonus exercises:

- Modify make_expression to allow for repeated operations in the same parens, i.e.,
make_expression(‘(3 + 4 + x + (y - 5 – 2 - z) + (3 * v))’)

- Generators: Modify tokenize to output a generator and modify parse to take in a generator.
- Modify make_expression to detect and raise a custom error when the expression is malformed, i.e.,

make_expression(‘(3 + 4’)

looking for separator or num

examplecode above

def parse exp index
base cases leaves of tree

Ffif fiens index 0 9
return Num int tokens index index 1

if bit a z var

if a c tokens index 0 a z

return var int tokens index index 1

leftftp.ihatexzdesparse exp index 1

dfétrator tokens index 2 1

right exp index 3 parse exp index 2 1

p.fi b iv moi

Essie ttsnt exrs.inaexs a

return parse exp o

112024

WHYUSE INTERPRETERS LISP
helpunderstandlanguagesyoualreadyknow
idea interpreter is justanotherprogram

IN.IEP EetmEeR programconvertinghighlevellanguagetomachinecode thenexecutesit on thego

compiler translator programconverting a program in onelanguagetoanother

E.EE iiii i
magnitude 34

magnitude 3 4

NEIL conditionalstatements

canuse foranycodinglanguage

LAB

Program Tokenize Parse Evaluate Output
Ex 1 32 5 testcomment

tokenize c s.ci 3 2 i 15

parse i i 1 3 27 5

evaluate o

6.101 Recitation 19: Lisp part 1 11/20/24

1

Question 1: Discuss with someone near you: what are the similarities and differences between
tokenizing and parsing in the Symbolic Algebra lab and the LISP lab?

Question 2: What will the code below output? Draw an environment diagram to represent the
program execution.

1 x = 0
2 def outer():
3 x = 1
4 def inner():
5 x = 2
6 print("inner:", x)
7
8 inner()
9 print("outer:", x)
10
11 outer()
12 print("global:", x)

Relatedly, what properties and methods would a Python class representing a frame object need?
What about a function object?

TREELIKELispate'ssw comments
leafnodesbaseexp numbers variables

candefinea longmulti
letter variable w assignment s

exppg.ggs Ex 32 5 testcomment

eu jiise9iiinzte'Entire file i iii I s

3 2 sub 5 5 0

type the char go fromthere

sum 3 2 5
sub 5 5 0

stack

of
Juter

it
x int

b what if 2 is commented out

lookintoparentframe it s stinette
t

global o

as
E.ggEntggeg

can check if something is

met cinutivar removes
me.in i uonguments no men

6.101 Recitation 19: Lisp part 1 11/20/24

2

Question 3: Rewrite each of the Python expressions below in Scheme.

example 1
(5 + 4) / (7 - 3 – 2 – 1) / 2

example 2
(lambda x: x*x)(4)

example 3
def area(r):
 return 3.14 * r ** 2
x = area(5)
y = x

example 4
def four():
 return 2 + 2
four()

1 54 7 3 21 2

lambda x 5
rounds

define area lambda r 3.14 r r

define area s
define y x var name is str exp

has c around it

define four 22
7 four

11 25 24

Lisp part 1 diff bit function call special form

W
goo p

Éfceto see similar diff bit languages
no looping in scheme recursion only
useful for understanding testcases

6.101 Recitation 20: Lisp part 1 Wrap-Up 11/25/24

1

Question 1: For each of the four statements written in Python below:
-What is the equivalent expression written in Scheme?
-What will the output of interpreting that expression be?
-How many times will evaluate be called in the course of interpreting that expression?
Note, example A has been completed for you.

; Example A:
; x = 4 ; provided Python code
(define x 4) ; Scheme equivalent
; output: 4
; # calls to evaluate: 2 – why?

; Example B:
; y = x - 1

; output:
; # calls to evaluate:

; Example C:
; square = lambda s: s * s

; output:
; # calls to evaluate:

; Example D:
; z = square(x) + square(y)

; output:
; # calls to evaluate:

lambda x x x

calls eval once storesthebody

3 4 x
eval 5 times looks eachelement

evaluates evaluates 4

define 9
eva wholething then y x1

defines layby as define squarex x x

calls 1 just sets square tobod

definez say w frame calls eval manytimes

evaluatordoes a lot underthehood

6.101 Recitation 20: Lisp part 1 Wrap-Up 11/25/24

2

Question 2: The following Scheme code comes from test_inputs/21.scm. Convert this scheme
program into an equivalent Python program.

(define (call x) (x))
(call (lambda () 2))
(define (spam) (call (lambda () 2)))
(call spam)
(call call)
(call)

Question 3: Syntax errors occur when code breaks the rules the rules define the combinations of
symbols that are considered to be correctly structured expressions in a programming language.
Syntax errors are generally caught during parsing and prevent any lines of code from being
interpreted / evaluated.

Discuss with a neighbor: what are common kinds of syntax errors in Python?

Thinking back to our Symbolic Algebra recitation last Monday, what are some examples of
things that would cause syntax errors?

As a reminder, our variation of make_expression last Monday handled expressions with:
- nonnegative integers, like 3 or 10
- single-letter lowercase variables, like x or y or z
- fully-parenthesized binary operators, like (3*x) for +, -, /, and *
- no extra parens or missing parens
- ignores spaces

Ei
eat

2 creatingfonc.fimonedgjggcalling spam lambdafunct

ion
s.mn ii s s

indentation
missing a colon

missingroundbrackets
cancountparentheses butdon't have to

SEEYE

Estession s expression

fi.EEiii it.iii iii

6.101 Recitation 21: Scheme conditionals and recursion 12/2/24

1

Question 1: Rewrite the abs function using a lambda expression in Python.

def abs(x):
 if x < 0:
 return -x
 else:
 return x

abs =

Question 1a: Now write the abs function in Scheme.

Question 2: Why do if, and, and or need to be special forms in Scheme?

Question 3: Write the sign function below in Scheme.
def sign(x):
 if x < 0:
 return -1
 elif x > 0:
 return 1
 else:
 return 0

lambda x x if co else

define abs lambda x

if a o

1 x

x

important that bothconditionals t F don'tgetevaluated
if only one of twooptionsshouldhappen

and or shortcircuitstopsearly
andstopsas soon as F
or stopsas soon as T

definesign
if 0 1

if 0
f

6.101 Recitation 21: Scheme conditionals and recursion 12/2/24

2

Question 4: Write sum_squares below in Python without using loops. This function should
return the same input as the original version for all integers n <= the recursion limit.

def sum_squares(n):
 total = 0
 for i in range(n+1):
 total += i*i
 return total

def sum_squares(n): # no loops!

Question 3a: Write the sqrt function below in Python without using loops. This function
should return the same input as the original version for all integers n <= the recursion limit.

def sqrt(x, epsilon):
 guess = x / 2
 while abs(guess ** 2 - x) > epsilon:
 guess = (guess + x/guess) / 2
 return guess

def sqrt(x, epsilon):
 # your code below

Question 3b: Write the sqrt function in Scheme.

Question 4a: Write sum_squares below in Scheme:

define sumsquares n
if equal n o

Yt sumsquares n 1 Ann

In sum savoreson
beginstatement

DX

guess 12

if abs guess 2 x epsilon
guess guess xguess 2
return sart guessepsilon

return guess

12 4 24

EXPR

sexprIII on
iiiieiisaa.isandon

6.101 Recitation 22: Linked Lists in Python and Scheme 12/4/24

1

Today we’ll be working with lists in Scheme, which will give us some practice with recursion
and linked lists.

The table below shows the built-in list behavior that you will implement during Lisp part 2 and
how it relates to Python list and linked tuple behavior that we have seen in recitation previously:

Scheme list input
return
type Python list linked tuple

(list? x) any boolean isinstance(l, list)
(list ...) sequence<any> linklist [...] make_ll(...)
(cons x y) any cons cell [x, y] (x, y)
(car x) cons cell any x[0] first(x)
(cdr x) cons cell any x[1:], or x[1] rest(x)
(append ...) sequence<linklist> linklist sum(..., [])
(length x) linklist int len(x) ll_len(x)
(list-ref x i) linklist num any x[i] ll_get(x, i)

Question 1: Write the sum_list function below in Scheme.
def sum_list(x): # x is a flat list of numbers
 out = 0
 for i in x:
 out += i
 return out

Question 2: Write the sum_nested function below in Scheme.
def sum_nested(x): # x is a nested list of numbers
 out = 0
 for elt in x:
 out += sum_nested(elt) if isinstance(elt, list) else elt
 return out

RECURSIVE
return 0 if not else 0 sum list 1

define sum list x
if not x

Pt car x sum list cdr x

def sumnested x
if equal length x
0

6.101 Recitation 22: Linked Lists in Python and Scheme 12/4/24

2

Question 3: Write the subtract_elts function below in Scheme.
def subtract_elts(x1, x2):
 # x1 and x2 are flat lists of numbers that have the same length
 result = []
 for i in range(len(x1)):
 result.append(x1[i]-x2[i])
 return result

Question 4: Write the find_max function below in Scheme.
def find_max(x):
 # x is initially a non-empty nested list of numbers
 if isinstance(x, list):
 best = find_max(x[0])
 for elt in x:
 best = max(best, find_max(elt))
 return best
 return x

SCHEME
define subtract elts x1 x2

defin i length x1ÉÉ's'istract elts x x2
i

def loop i
1

has 3
1 loop i 1else

return cis x2 is loop iti 1 I
l
i

1219124 last rec

I si tsnists.iterames.senerato ssis5eiiiuEEitiit
geisagraphsearch

initiaters

LOOKING FORWARD

i.ISnInPstIndandlib externalpackages

soso.si iiiiinh ge
i li

6106optimization
898 8.200

3356.300
fjfqfÉIpy yyf

ÉÉ

ÉÉ 198.14s Aime 0.390 0.4126.4136.411

ses

6.101 Recitation 23: Looking Back & Looking Forward 12/9/24

1

Question 1: Classes + Environment Diagrams
For each example program below, write what the output will be and draw the associated environment diagram. If the
running the program would result in an error, write error instead and describe the problem.

example A
1 class A:
2 cls_var = 10
3 a1 = A()
4 print(a1.cls_var) # =>________

example B
1 class A:
2 cls_var = 10
3 a1 = A()
4 a2 = A()
5 a1.cls_var = 20
6 print(a1.cls_var) # => ________

7 print(a2.cls_var) # => ________

example C
1 class A:
2 cls_var = 10
3 class B(A):
4 cls_var = []
5
6 b1 = B()
7 b2 = B()
8 b1.cls_var.append(A.cls_var)
9 print(b1.cls_var) # => _________
10
11 print(b2.cls_var) # => _________

example D
1 def global_fun():
2 x = 10
3 class A:
4 def a_fun(self):
5 return x
6 x = 20
7 return A()
8
9 a = global_fun()
10 print(a.a_fun()) # => ________

STACK HEAP

of int

10
instance I

stocky intof

20

to Iii
y h

Eiii10

I
c

class m

EE.mx

6.101 Recitation 23: Looking Back & Looking Forward 12/9/24

2

Question 2: Recursion + Iteration + Generators
For each example implementation of the map function below, what would the output of the
following program be? If this would result in an error, write error instead.

def add_to_all(map_func, k, inp_list):
 return map_func(lambda n: n + k, inp_list)

print(add_to_all(map, 3, [1, 2, 3, 4, 5]))
print(list(add_to_all(map, 3, [1, 2, 3, 4, 5])))

example A
def map(f, inp):
 return list(f(x) for x in inp)

example B
def map(f, inp):
 yield f(inp[0])
 yield from map(f, inp[1:])

example C
def map(f, inp):
 if not inp:
 yield []
 return
 yield f(inp[0])
 yield from map(f, inp[1:])

example D
def map(f, inp):
 if not inp:
 return
 yield from map(f, inp[1:])
 yield f(inp[0])

example E
def map(f, inp):
 if not inp:
 return
 yield f(inp[0])
 yield from map(f, inp[1:])

6.101 Recitation 23: Looking Back & Looking Forward 12/9/24

3

Question 3: Backtracking with Tent Packing – see readme
What are the success base case(s)?

What are the failure base case(s)?

What are the recursive case(s)?

Write a description of a high-level algorithm you could use to solve the problem

Question 4: More practice

example a Write the body of an infinite generator that will produce the desired output below
def fibonacci_generator(a=0, b=1):

for i, fib in zip(range(9), fibonacci_generator()):
 print(f"fib({i})={fib}")
fib(0)=0 fib(1)=1 fib(2)=1 fib(3)=2 fib(4)=3 fib(5)=5 fib(6)=8 #fib(7)=13 fib(8)=21

example b -- turn this generator into a regular function
def flatten(lst):
 for item in lst:
 if isinstance(item, list):
 yield from flatten(item)
 else:
 yield item
nested_list = [1, [2, [3, 4], 5], 6, [7, 8]]
print(list(flatten(nested_list))) # [1, 2, 3, 4, 5, 6, 7, 8]

6.101 Recitation 23: Looking Back & Looking Forward 12/9/24

4

Question 5: BFS vs DFS + recursion

What will the program below output?

def dfs(graph, start):
 visited = set()

 def dfs_recursive(vertex):
 visited.add(vertex)
 yield vertex
 for neighbor in graph[vertex]:
 if neighbor not in visited:
 yield from dfs_recursive(neighbor)

 yield from dfs_recursive(start)

Define a graph as an adjacency list
graph = {
 'A': ['B', 'C'],
 'B': ['D', 'E'],
 'C': ['F'],
 'D': [],
 'E': ['F'],
 'F': []
}

Perform DFS traversal starting from 'A'
for vertex in dfs(graph, 'A'):
 print(vertex)

For an extra challenge, write a recursive BFS version below. What will the #
printed output be now?

6.101 Recitation 23: Looking Back & Looking Forward 12/9/24

5

Summary of Readings Since Exam 1
Recursion

• base case, recursive case, combination
• recursive cases are smaller than original
• helper functions

Recursion and Iteration

• some problems naturally iterative, some recursive
• recursive patterns

o list-like: first/rest
o tree-like: children
o graph-like: neighbors

• recursive helper to accumulate partial results
• recursion for DFS
• generators

Recursion with Backtracking

• a generalized graph-like search with constraints
• typical structure

o success base case
o failure base case
o recursive case that reversibly tries possibilities

Custom Types

• the power of abstraction
• Python's class keyword and the environment model
• class vs instance attributes / variables
• two scoping paths: variable lookup through frames, attribute lookup through dot notation / classes

Inheritance

• subclasses and instances
• inheriting vs overlaying methods, leveraging polymorphism
• lifting shared behaviors to superclasses

Functional Programming

• converting imperative-style loops to functional-style recursion
• converting classes to nested functions
• memoization

