[ol21/247]
RECLURSION vs. [TERATION - wwhen 4o use reCurs:own
- natoral recursion problem defnion

- tree-ike da+3
- list-ike dara

Linkeo LisT vs. LisT:

* linked list +ople of toples is (mmMuUTABLE!

T reguiar list: have to copy befere copyng

slist[1:] +akes lovige/~ +han liaked-I's+[17]

s linked 1is+ be+ter e recorsion

clinked Ust iS hard +o index inte (Lstl2] vs. tinked-1ist[1JLI1Ced)

e linked I'st hard 4o &nd Froe lenw (len(i:st) = %, leu\(w\lceo(_l"s{-) =2)

6.101 Recitation 11: Iteration and Recursion with Linked Lists 10/21/24

Question 1: For today’s recitation we will define an empty linked list as None, and a non-empty
linked list as a length two tuple of (element, linked list).

Complete the environment diagram to represent the execution of the code below.

Heap

lsta = [1, 2, 3]
11a = (1, (2, (3, None)))

1stb = [3] GF
11b = (3, None)

1llc = None lstc 3 tople z (f_L.g)
llc \\’(f_—r‘\f

lsta ———+ | I'st

—~

e T -2
T
1stb —\ . rople

Ivs¥ ¢
~ (p:\)
11b
Istc = [] \ ‘:‘-\i— nt topte

Question 2: Fill in the body of the functions below:

def first(1ll):

\’st ik
\ ls ;'?:" S ri None

returns the first element of a non-empty linked list

>>> first((5, (10, (15, None))))

5

retuenn 2L[O7]

def rest(1ll):

returns the rest of a nonempty linked list

(omitting the first element)

>>> rest((5, (10, (15, None))))
(10, (15, None))

retorvn 2L[17

Why would these helper functions be useful?
. sooo\ for clarty

6.101 Recitation 11: Iteration and Recursion with Linked Lists 10/21/24

Question 3: Implement the following functions recursively, and then iteratively:

def 11 len(1ll):
HITERATIVELN:

get the length of a linked list (oont = O
while €L (s wnot None:

>>> 11 _len(('a',('b',None))) L2 = rest (22)

2 count += 4

mmon m+
RecurSION: refurn cov

if 22 is None:

reforn O

rerorn 4L+ 2A-1en (22[013)
helper fsncton

RECORSION)" we wrote

o
@ def 11 _get(1ll, i):

get the ith element of a linked list

>>> 11 get(('a',('b',None)), 1)
lbl

H RECURSIVE:
i€ i 2= len(LL) ov i<-l-len(22)
r3ise TwndexEvronl('lnked I:st index $i3 out of ranae’)

i€ i< O:
4= n-len(ee)

€ iz==z0o:
retorn Birst(2L2)

rerorn Re.get(res¢(22), i-1)

Or.‘a_’v\al_; =
length = Il -ten(ee)

i€ i 2= len(2L) or i<-l-len(22)
r3ise TwndexEvron(€'lnked 1:St index $original-ig out of rav\ge')

return helper (rest(ee), i-1)

def wetpe~(LR,:):

it iczo: HoISTIANG! W3uing recorsive s4uef in

. seperate fonckhen
erc.

fwo/23/247]

WHY LINKEOD ¢|IST?

.minesweeper |ab has lors of nested I'sts - linked lists qood for nested strouctores

*innerently recursive Strocture - easier +o selit
« list[1:7 makes new CoPd While linked-I1ist[1] does NOT make Cory
- lnked ISt immoutable

* LISP impiements [nced I's+

6.101 Recitation 12: Iteration and Recursion with Linked Lists Part 2 10/23/24
#korder~ w\artefs

Question 1: Implement the following function recursively, and then iteratively.

def make_1ll(*elements):

given an arbitrary number of elements as arguments,
make a linked-list of (first,rest) pairs

>>> make_11(1,2,3)
(1, (2, (3, None)))

it not elements:
return Noné

return (elemenis(ol, make. 22 (¥eiements D)

22 = Nowne
for el in reverseod (elements):

Qo= (elit, 22)
erorn 22

Question 2: Implement the following function recursively, and then iteratively.

def 11 concat (111, 112):

return a new linked list that concatenates two linked lists

>>> 11 concat (make 11(1), make 11(2,3))
(1, (2, (3, None)))

>>> 11 concat (None, make 11(4,5))

(4, (5, None))

i 221 s Nowe:
return 222
i€ 222 s Nowne

returvn 201
else:
cemainder= LL-Concat(rest(2e1), ££2)

retruen (Sirst(224), vemainder)

new-22:-222
for i in reversed (ranae (2e-len(221))):

new_ 22 =(22.9er(221, i), new-22)
return new-L2

6.101 Recitation 12: Iteration and Recursion with Linked Lists Part 2 10/23/24

@ Question 3: Implement the following function recursively, and then iteratively.
def 11 reverse(ll, so.far = None):

mwwn

return a new reversed linked list

>>> 11 reverse(make 11(1,2,3))
(3, (2, (1, None)))

wuan

i€ not 22
vetorn ANone

rerom 2£-reverse(res+(22),(Fw$+(2£),5o-€ar))

new-2L = Nene
while £2-
new L= (ett, 2R)

LL=rest(e)
rerurn new-24L

Question 4: Implement the following function recursively, and then iteratively.
def 11 elements(1l1):
return a generator that yields each element in a linked list
>>> 11 gen = 11 elements (make 11(1, 2, 3))
>>> next (11l gen)

1

>>> list (11l gen)
(2, 3]

wwie £22:

yield first(eL)
L = rest (22)

LL.9en = Q2. elements (make_LL(1,2,3))

Pr:nk(new¥(2£—32n3)

|10lzgl2y

REFACTORING: improving tade wlo Changing its Funchon
ConE SMELLS: Some ewngivieers talk Bb. cewde having qood/bad fswmen” (syn. for Shyle)

3 R'S of REFALTORING:

2READABILITY [docomentarion + stuled
- 2v0id REPETITION (Don’ cepeat sourself, make helper Fnchions, he.)

> wnsider RUNTIME (efeiciency)

ReFACTOR PRoceEss:

) vnderstand

2) make 3 plan
2) implement plan
1) losk back

6.101 Recitation 13: Mines Wrap-up

Question 1: What strategy did you use when refactoring the

def dig_2d(game, row, col¥g cneck -vithry '-‘;".;gme is over, do netivg
if game["state"] == "defeat" or game["state"] == "victory":
game ["state"] _J

== it
game ["state"] # keep the state the same

10/28/24

2d-version of minesweeper?

game[state] ! = ongoing:

return O

return 0
#Hcnecking if we dug a mnme £ lost
if gamel'b ozt e! [col] == "_n board -val = 33Me£‘°°6"°‘]["°w:| [e=1]

rn I
T

13

N
Wt

"defeat"

ny

1
game ["state"] =
return \ revealed

#game state check -don't need 4o do it before
um_revealed_mines

nu
for

revealed_squares 0
in range (game["dimensio
¢ in range (game["di

if game["board"] [z

"]1[0]):
nsions"] [1]):
[c]

if game["visible"] [r] [c] == True:
num_reyealed mines += 1
ame ["visible"] [r] [c] == False:

set the game sta

game ["state"] = "victory

visi ble-val
if game["visible"][row] [col] != True:
game ["visible"] [row] [col] = True
revealed = 1
else:
return 0
board - v 3l
S e Mhesmdt) el aat) 0
nrows, ncolumns = game|["dimensions"]

. if 0 <= row - 1 < nrows:
cnecking

i
for neigh borg
Surrouno\““ﬂ
twe bozrd v3lve

f 0 <= col - 1 < ncolumns:

s IR Sl 13
T T TT

k1 k1

R | N 1}
B E— T—

1

1)

T
B

L
e

.

o e 13 3 oo
T TSITOT Ei + pigomn

s
TE—gam W

+
revealed += dig 2d(game row — 1 caol
some code that was copy / paste / modify omitted
if 0 <= row + 1 < nrows:

if 0 <= col + 1 < ncolumns:

£

for

[l PRI 11 R I
3 Tt T

I IS T 1}
+— —

=)

if game["vigible"] [row + 11[col + 11 Fal

+ 1)

o

revealed += dig 2d(game, row + 1 col

num_revealed mines = 0 # set number of mines to 0
num_revealed squares = 0
for r in range (game["dimensions"][0]):
#—forecaech—xy
for ¢ in range (game["dimensions"][1]):
o fre ke

if game["board"][r][c] ==
if game["visible"] [r] [c]
1f the game visible is True,
add 1 to mines revealed
num_revealed mines += 1
elif game["visible"][r][c] False:

+= 1 T return revealed

n"own.

True:

and the board is '.',

num revealed square

N .
€

727 B led
77 e ram—E et T

Si-iez=
if u;_wx_dveaba:(-zsﬂrtﬁru ==o

1 ed
Fre—e aret—SeEaE

game ["state"] = "ongoing"
return revealed

else:
game ["state"] = "victory"

return revealed

EFF\CIENC Y:

. s
 when making Swihg. 2 ser, i+ akes a long =

long Hme (as

mines= set+ (ele(mine) for mise in MMP-S)] create Sel

for * C in mines: loop + veduce

'S*br:v;\s..\:alues vs. fonchon calls

visible _val = game [visible Jlrow] [eo1]

te to

already mMaking sore thee 3€ wno

mines 2mvund
outside of loop autady Seiting visible boadl fo True

v oin v'amse(mszmw—\/°5/M""(V"”""s' roves+2))
for ¢ in ramsefmax(w\-\1°3,M""("“°'“"""s» cols +2 DE

revezled += dig. 2d (game, v, L) /

i

if 33me[bearo\j[f_.l (el M=
2nd ot gawme [vesibled(rTLc] ¢

return revealed

~ Short
Circoiilg

wnew 9ame nol

searsity

8 clemeutrs iwn set)

outside the

roak~e

6.101 Recitation 13: Mines Wrap-up 10/28/24

Question 2: What are instances of tree-like, graph-like, and list-like recursion in the mines lab?

| | GRrRAPH-LIKE: LisT- LiceE:
k looking for neighbors 1€ the >ger/set value +to peel ofF +he

I:I:l E[E] EI:' bozard vale s O 18t coocrdinatre (dimension)

’ i H + oA :
/ | > fhe ‘visited set’’ is +he firsticoord (0] , resticoord 1]

L [|
Py Py

dimensions: 3x2xl| J | | ,

D visi ble board in th's case > 9et wneighbors

r F 3 > get all coordinates

board is #+ree-like (eaclh dimension
iS 2 sepevate subiree)

Question 3: Below is a recursive all_coords function that returns a list of tuple coordinates.
Modify the code below to make this function into an efficient generator.

def all_coords(dimensions):

A function that generates all possible coordinates in a given board.
if len(dimensions) ==
return [(x,) for x in range(dimensions[@])]

first = all_coords(dimensions[:1])
rest = all_coords(dimensions[1:])
result = []
for start in first
for end in rest:
result.append(start + end)
return result

10/20/2Y4 - BACKTRACKING

1) UNDERSTAND +he Problem

~What 2m i +rying +o satisfy?
—what 3re my choices?
-~ wWhat are my constrainds?

- draw decision +ree

2) make tne plan

-vuse “recipe, ”’ Kl in blanks

3) impiement +he plan (codle)

4) look back (optmize)

6.101 Recitation 14: Backtracking 10/30/24

Question 1: You ordered food from SuperEats for you and your friends. SuperEats delivered a
variety of entrees with varying quantities. Your friends have given you their unordered
preferences for which entrees they like. As the host, you are trying to determine a way to assign
the delivered food to your so they can all get one of their preferred dishes.

No solution example (there is not enough food for everyone): SATISFY: geting the Food
people = {'alex': [‘Acai’, ‘Burger’],

‘bob': [‘Burger’],

‘cam’ : [‘Burger’, ‘Salad’]}

food = {‘Burger’: 2, ‘Salad’: 0, ‘Acai’: 0}

Solution example (alex and bob can get burgers and cam can get a salad):

people = {'alex': [‘Acai’, ‘Burger’],
‘bob': [‘Burger’],
‘cam’ : [‘Burger’, ‘Salad’]}

food = {‘Burger’: 2, ‘Salad’: 1, ‘Acai’: 0}

Discuss with someone around you how you would approach solving this problem using different
graph search methods:

- brute force search -» generatre a1 possibil'es iwen check each

'S: ble!
BFS » start from 3 pesrson Hhewn explore e3aclh Path — __ #dont need visited set bl/c not CS:ea le
A have to check each path evew if no
- DFS = pop(-1) instead.; will be less memory vse o o eiShS - ot i ‘

- Backtracking - similar 4= DOFS but w/ conSirainks ed @&

ors.own OFS foachon
/23\ @ @ # recursion has <
ga:83 2a:83
x /) E® B

So:g, b:83

BruTE ForeE (exhavstive)
Solothon:

-explore 20l Goed ‘tems/PP!

BFS:

.rewmove nodes from oppesiie
sides of 29ewnda

* expPlores shorteSt paing Is}

DFSs:
-@ex plore current then back#ack

BAcKTRACIK

- Simiar 4o DFS but backiracl
23S scon 23S wWe reali2e s
Not+ worth centnouing olown
Ssomg branch

-goocl fer problems Wi constrainks

6.101 Recitation 14: Backtracking 10/30/24

Question 2: Fill in the body of the feed function below.
def feed(people, foods):

Given people who are hungry and the available food supplies, find a mapping
from people to available foods they prefer if one exists.
Parameters:
people: a dictionary mapping a name to a list of their preferred foods
food: a dictionary mapping available foods to their quantities
Returns:

Dictionary mapping person to assigned food if there is enough food to
match everyone's preferences. None otherwise.

>>> people = {'alex': ['oreo', 'chocolate'], 'bobbie’: ['vanilla']}

>>> feed(people, {'oreo': 1, 'vanilla': 1}) == {'alex':'oreo', 'bobbie’: 'vanilla'}
True

>>> feed(people, {'oreo': 1, 'ketchup': 1}) == None

True

#if nothing left +o SatisFy —» SUCCESS!:
it not people:

cet+orn 53

cnoose owne thing to satisfy
person = m'n (people, keyslambda f: lew (people[p]) # take the most consirained pesson (min len)

pecsen—cmextliteclpecpie)) # same as list(people. keys())[o7]
#look through cho ices +o saksfy

for food in people [person]: # food has +o be in person preferences
non-2ero food
if foods.get(food, O) > O: # prevents KeyError (default o)
—Peopiepoplperton)
new- people= 3p: ¢ for P.F in people. items()3
new. foods = SF:i for £,/ in Fecds. itemsO3
NewW _foods [foed] -=| # -I food available
resul+ = feed (new -PEopPLE. New-Foodls)
it result iS not Neone: # success
result[person’] = Food
re+urn result

Hif no val’d choiceS - FAILLRE
rfefuvernn Nowne

Wiyl zu

SAT Solver overview:

- satis€ying . 3ssignwment wl backtracking reclee

> opHmizing
= Pprune tree
- avoid cycles
- aveid extra coPying

£:(2 or b or ¢) 2nd (b or wnot 3) 3nad (votb)

S2Hsfying— assignment (SA)

RuULES:

‘no clavses lef+—> sorved!

cempty clawse = uassivable

- variable c2n only have ove valve

SA (&)

var,va) = ‘a’, Teue
~/
f:lfeT]) [LF1]
SA ()

v/

F2°Lc3]

A INEFFICIENT blc ownt clavse BT most work:

° &similac 4o binary tree
2 :

flcetirbry]

Sa(f) f2-TreT cT3 F
?7 \b‘ 2z=[loT, .L6F1]
b‘"/ \bF
[ey (el
[e13 [ceral
sa(ey)
Jer
11 v

Yieto vs. Yieto From:
-4ield From is basically 3 for loop + yietd

}32@5 1,2,3

I 2isogekrs (,2. 3

~yield rerurns 3 Siagie val few generater funcen

cyield From yields 21l valves Frow temator /gea

A compoters NOT Fast enovugh
o keep vp w/ 2%

(#ry +o wmnimize tree brawnches)

nowndeterminisHe polgneomial
polyvom:al tme Heae
\ /
nk << 2n

wmuch more
efcficient

6.101 Recitation 15: SAT Solver Wrap-up 11/4/24

Question 1: Applying Polya’s problem solving method to satisfying assignment:
Format:((p.€), Troe)

1] Understand the problem similar o boalfs:

- What are the rules / constraints of satisfying assignment? Food mapped o a0a”

- What are we trying to satisfy? L

- What kind of decision tree do we end up with?

+y similar 4o roowm +o c2p3city

. name & prefeced Food!

7QULES:

lI@23ch person only needs 4 Food

2: can only give ouvl x nomber of Food

3: pp\ need 4o eat exactly 1 Food

2] Make a plan
- How do we apply our general recipe for backtracking to satisfying assignment?

- Will we need any helper functions to be useful? with Format ((person, focdh), boo1), how +o

—»PreFerred-F‘pedS() (rote 1) +ake resolt of Sai—-’ng-‘ng_aSS-'smme«-r 23~
> 1 Fonchon For role 2 person. one-foed (), rute 2 at_most()

3] Implement the plan

ou‘t‘PU+ An3zl resol+?

4] Look back
- How can we optimize this search?

Question 2: What is the result of calling satisfying assignment on the formula below? How does
using the unit clause optimization make solving this formula faster?

formula = [
[(‘a’, True), (‘b’, True), (‘c’, True)],
[(‘b’, True), (‘a’, False)],
[("b’", False),]1,
]
result = satisfying assignment (formula)

6.101 Recitation 15: SAT Solver Wrap-up 11/4/24

Question 3: How can we solve our potluck from last Wednesday using satisfying assignment?

Question 4: implement all combinations as a generator function

def all combinations (elements, N):
Given a list of hashable elements (with no duplicates) and N
(the size of each combination), make a generator that outputs
length-N tuples of all combinations of the elements

>>> sorted(all combinations([1, 2, 3, 4], 0)) == [()]

True
>>> sorted(all_combinations ([1, 2, 3, 4], 1)) == [(1,), (2,), (3,), (4,)] wirH generators:
True Faink 2bouf what you
>>> y = all combinations([1l, 2, 3, 4], 2) w3t 4o 2ppend!!
>>> sorted(y) == [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
True
>>> z = all combinations([1, 2, 3, 4], 3)
>>> sorted(z) == [(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
True
>>> sorted(all combinations([1l, 2, 3, 4], 4)) == [(1, 2, 3, 4)]
True
>>> sorted(all combinations([1l, 2, 3, 4], 5)) == []
True
i€ N=z0: ¢ N== O:
giewd [07 retorn [01]
€lif wot eclements: el f not elements:
yiewd [1] rerwra [
cise: eise:

ficst = ele +s (.
glementsiol first = elements [0
rest : elements [1:]
rest = elements [1:7]

Yyield from ai_combinatrons (rest, N)

2ll-combos = 3l| - comlbinatons (rest, N)
for combe in 2ll-combinatons (rest, N-1)

yield (first,) + combo for combo in 3ll_combinatons (rest, N-1):
2. combos . apPend((first,) + combs)

Veturnn 3Bll-combos

WHeNn To ©OSE sele. z

Suhen yeu want o lkeep 2 vaciable

when print (obj) in a class, calls sie

— Cepr—_ 3lso

6.101 Recitation 16: Classes & N-Body Physics Simulation 11/6/24

2bstractbon, elanet simulabon

Question 1: Today we’re going to build a planet physics simulation (see video.) Discuss with a

neighbor: what classes would be a good idea to implement? What attributes and methods should
each class have?

Vilesi 12 Vi[ed + & [ot

Yilew12aXe[6] + T, [eDole

ZJ- Fij R G‘M'.MJ
- S —_—
;T w; = & '
w112
CLASSES: ATTRIBGUTES M ETHOD
Planet M2SS - Forces
pos: Hon (Vec‘—o/\) - pzraMel—Cl‘S‘. P]aV\Q‘{', 'S+ of
velocity

_—
other planets 3pelying F

Sy |2+on .
WMo list of planets 2pply Hmestep ot
Vetter n o\ COov*al lis+

6.101 Recitation 16: Classes & N-Body Physics Simulation 11/6/24

Question 2: Fill in the missing code below for the following Vector class methods:

class Vector:

def

__init__ (self, coords):

each Vector object has a nd tuple of coords

def

def

def

def

def

def

def

e |f. Coords = tuple (csords)

__repr__(self):
repr(Vector([0, -4])) -> 'Vector((o, -4))'
name — 3 (Eself. coords 2)’

reforn F'Sselpo—_class —.

add(self, other‘):+
Vector([1, 2]).add(Vector([1, ©])) -> Vector((2, 2))

rerorn Vector (Li+j For i,) in 2ip(sel€. cooras, other coords)1)

sub(self, other):
Vector([1, 2]).sub(Vector([1, ©])) -> Vector((@, 2))

rerorn vVector (Li=j for i,3 in 2ip (Sel€. coorads, oihen coordsd1)

num
scale(self, other):
Vector([1, 2]).scale(5) -> Vector((5, 10))

rerorn Vector (Li® nom fFor i,) in Sel€. cooras 1)

um

div(self, dgher):

Vector((4, 2)).div(2) -> Vector((2.0, 1.0))
retorn Vector (Li/ nom for i,) in Self. coords 1)

OR

retorn self. scaie('/mom)

magnitude(self):
Vector((3, 4)).magnitude{) -> 5.0
rerovvrn sum([i*"'z for 7 in Self. (,sora\sj)**og

normalize(self): # creates a unit vector in the same direction
Vector([3, 4]).normalize() -> Vector([.6, .8])

retorn sem.dw(sm@.majnﬁude())

CLASS ATTRIBUTE - Stored inside clasg

c12SSs

Sgwmbol —]

> &

(each instance of class Wl share the

class at+ribute)

. "“S{'aﬂce ;A§+M3

[

Pos

6.101 Recitation 17: Classes & Inheritance 11/13/24

Question 1: Eat That Sock is a 2D game where a human player competes with a bot to see who
can score the most points in twenty seconds. Players score points by collecting socks. Socks can
be different colors, with each color corresponding to a different point value. Socks randomly
appear in the game, and also randomly disappear if the players don’t collect them fast enough.
Walls keep the players and socks in bounds.

Discuss with a neighbor: What are the different objects that we would need to represent this
game? What attributes and methods would each object need?

For example Game:
-Stores all other objects
-Keeps track of time remaining
-Each time step:
Moves players
Makes socks appear / disappear
Renders updated game board
-Decides winner at the end

Sock: Rot:

- position (row.cor) - poSiHon

4]
- (olor: red, yellow, 3reen -color (mage +2)

- Symbal - @

“ S4ymbol: S
- render

- points: red |, Qreen 2, yellow 3
- Scocre

- 4 : N ear
TTL (+Hme vakl d'ssapear) ~ move according o din

- Pa(\JOMl'j c,b\a,nge a.r.

Player: - ea+s Socks

- posihan

- Color (vandowm) W ait:

* Symbol: @ - pPos’tkon

- cender - color (wi'te)

- Score - Symbol: &

- change dir. v keg - reander

- Move 2« oding to current ol - cdoesn+ move

- eats sSocks - C2n% intercect W/ odrer objecks

GamePiece

Game

i ibutes: class attributes:

WLiSC:;nT;_g;Tb::;r bot symbol (default char) Player _

pieces, time_left color (default str) class a'ttnbutes.

d bol: “@"
methods: i i . ;ysrzance gtributes- GAmePiece
init_, update, run, render instance attributes: instance attributes:
2 position (row, col) position cl instance

Gl score=0 ASs n [l
class attributes: methods: bol, Alive
symbol: "’ init__(position) update: Color, symbol,
instance attributes: update(self, game) Move in direction (not
color: rand red, green or yellow render(self) onto walls)
points: 1, 2, or 3, determine by 4 eat socks and update
color score
time_remaining: random

alive: True Wall

class attributes: H sman, 3 Bot
update: symbol: “#’ Instance attributes: class attributes:
decrease time remaining, until | | color: “white” color: random color: ‘magenta”
it disappears direction: None direction: random 1
render: do not display if not update: update:
alive Change direction Change direction

according to key press randomly

6.101 Recitation 17: Classes & Inheritance 11/13/24

@ Question 4: Look at the blank Bot class shown below. Fill in the missing body. If implementing
a method would be unnecessary, cross it out instead.

class Bot(Player):

A basic bot that randomly moves around the screen.

Color = ‘magenta

%}éi__init__(self, position):

def update(self, game):

Given the recent keys pressed and the current game, update the object.

dicections= [Came. OP, Game. DowN), Gawme. LEFT, Game. RIGHT]
self.directionz random.choice (d:rections)

Player. vpdate (sele, game)

}% render(self):

Takes the state of the object at the end of a timestep and displays
it to the screen.

6.101 Recitation 17: Classes & Inheritance 11/13/24

R17 Participation Credit Kerberos : (@mit.edu
Hand this sheet in at the end of recitation to get participation credit for today.

Question 2: Look at the blank Wall class shown below. Fill in the missing body. If
implementing a method would be unnecessary, cross it out instead.

class Wall(GamePiece):

Static game piece represented by a white "#" symbol which prevents

pieces from going out of bounds.

symbol = V"

color = ‘wnite”

ax{___init__(self, position):

%

update(self, game):

Given the current state of the game, update the oﬁjéct.

down+ need +o implement

3y of these functiownst!

31l inherired Ffom Game Piece
render(self):
Takes the state of the object at the end of a timestep and displays
it to the screen.

in render Ffrom class Gawmeprece:
print. 3t loc2Hown(*seie. position, self, Symbol, self. colo~)

6.101 Recitation 17: Classes & Inheritance 11/13/24

Question 3: Look at the blank Sock class shown below. Fill in the missing body. If
implementing a method would be unnecessary, cross it out instead.

class Sock(GamePiece):

Static game piece represented by "s" that is visible for ttl timesteps
before disappearing. Socks come in different colors, and each color is
worth a different number of points. Players earn points if they intersect a
sock before it disappears.

Created by the game at a random position, initialized with a random color,
disappears randomly.

SYymbol = g
Color_oprions = 2 red“: 1, ‘green: 2, ‘plue : 3 3
def __init__ (self, position):

Sel€. olor = random. choice (1ist (SeLE. Color. ophons.keys()))

Game Piece . — inik— (sele, posi Fon)
self. ++l = ramdom.randin+ﬁo,2°)

def update(self, game):

Given the current state of the game, update the object.

SCIE. +HH -= 14

i€ selb. ++l ¢= O
selc.21;ve = False

>é% render(self):

Takes the state of the object at the end of a timestep and displays
it to the screen.

RPOSE ToocROX: cC Hown & vctures

Ky

N " ToolLS: cktracking

T T -

Ex: every cldss has 3 precedence attribute (general class aribute)

-evalvatre st w/ precedence instead of type-checking

-dont want do have +to have many classes & many € statements
Ex: Varl('x’') +§ o _add_
S 4+ var('s’') = _vadd—
IN EACH BINOP Su@gcCLasS... (add, sub,. deriv, erc)

- Simplify merhod

© eval method

MAKE. EXP: symbolic algebra vs, LISP

Sywm boli¢ 2lge bra: Lise-
(x +S) (+ x S)
(x+s + 8) (+ x s 9)

comments (+ x §): ignore rest of Line

TokENIZE:

6.101 Recitation 18: Symbolic Algebra Wrap-up 11/18/24

Question 1: Discuss with a neighbor: What are the pros and cons of using classes (as opposed to
implementing the same kind of behavior using builtin datatypes and functions)? What are some
real-world applications of classes?

CLASSES: vs. FoncTions / BuiLTins:

Question 2: Discuss with a neighbor: What are some real-world applications of inheritance?

Today we’re going to think about how to implement a variation of make expression that has:

- nonnegative integers, like 3 or 10

- single-letter lowercase variables, like x or y or z

- fully-parenthesized binary operators, like (3*x) for +, -, /, and *
- no extra parens or missing parens

- ignores spaces

Question 4:
make expression (™ ((3 * x)+(10*y)) ”) =>Add (MU‘ (nom(3), Var(x')), Mol (Nom (10), Va’(l'ﬂl)))
= tokenized (sPli+ into chars in I'st)

- parsed

®

6.101 Recitation 18: Symbolic Algebra Wrap-up 11/18/24

Question 5: Discuss with a neighbor: How would we go about tokenize?
Slooking for sepeérator orf wviom

> example woe abeve

Question 6: Discuss with a neighbor: How would we go about parse? What recursive pattern
are we using (list-like, tree-like, graph-like)?

def parse(tokens): # tokens is a list of strings

det parse-explindex):

i€ “o0" <= +okens[index1[o] <= Sqn
retoen Nowm (int (tokens [index])) , mdex + 1

)

i€ ‘o <= +okens[index][e] <= ‘e
retornn Var(int (tokens ['_a‘ndexj)) , mdex + 1

le et - exp, index-2 = Parse -exe (index + 2)

operatror = tokens Linckex-2]

rrqhtr- exp, index-3 = parse.explindex-2 + 1)

op-lookop = '+ Adel, '-':Svb, /7 Div, ‘2 Mol 3
operator Class = op-leskoploperator]
retuvrn operator_class (1ee+. exp, right_ exp), indexd +1

retorn parse_exp(0)

Bonus exercises:
- Modify make expression to allow for repeated operations in the same parens, i.e.,
make expression(‘'(3 + 4 + x + (y -5 -2 -12z) + (3 * v))")
- Generators: Modify tokenize to output a generator and modify parse to take in a generator.
- Modify make expression to detect and raise a custom error when the expression is malformed, i.e.,
make expression(‘(3 + 4')

1f20/2y:

WHY USE INTERPRETERS (LiSP):

‘help understand langoages you already know
‘idea: interpreter (S just another pProgram

INTERPRETER > program converiing high-1evel language o machme codle & jhen executes it on the T)
-ex: Scheme
COMPILER-» ‘transiator” — program cowverhng 2 program in one language o 2unether

PYTHON VS. ScHEME (interpreter)

python \ischeme

def mag (x.4): * (detine (mag x 4)
veturn Sqrt(x*x + y*y) | (Savt L+ 3 5)

Masv\:‘l‘ude (3.4) (* 44)))

(magnitude 3 4d)

NEXT LABR = tond:bonal siatements

-récorsion
- €3n use for any eoding ‘anguage

“LABw

PROGRAM - Tokenize —» Parse > Evaluare—» OuTePuT

Ex: '(-(+32)5); test comment’

fokensze: ['(r, ‘-7, '’ ‘4, ‘3", 2, Yy, 's" ']

parse: ['-', ['+', 3,27,8]

evaluate: O

6.101 Recitation 19: Lisp part 1

11/20/24

Question 1: Discuss with someone near you: what are the similarities and differences between
tokenizing and parsing in the Symbolic Algebra lab and the LISP lab?

Li1sP:
.deals w/ commewnts

-can define 3 long, multi-
letter variable w! assignment

- evalu atre ol:Fferent I'nes
. parse/tokenize enkre &€

TREE-LIKE (ISP
-leaf nodes (base exp): nuwmbers /variables

* S-expressions :
fop-1evel 1St

Ex: '(-(+32)5); test comment’

TREE: EVALVATE:
N
\
*o3 2 [svb, 5, $T>0
' EvALLATE:
-check type of the chav & go from there
=Str. num, l:st

[Sum,3, 2] 5§
[sob, 5, §T>0 v

Question 2: What will the code below output? Draw an environment diagram to represent the

program execution.

) 0 STACK HeEAP
x =
2 def outer(): x
3 x =1 GF outev
4 def inner():
5 X = 2
6 print ("inner:", x)
7 created in
. 6F, so Fu
8 inner () points o outertl))
9 print ("outer:", x) iuere x - '2"
10 Fl iV\V\eV‘o—
11 outer ()
12 print ("global:", x) <
‘nwner: 2 X _4'2*
outbker: 4 Fa
global - O
b) what i€ X2 S cemmented out? Q) if inner() foachon is moved out?
- . ?
innec: 14 & look into parent frameé (& x=2 st commented out?)
ouvter: 1 inner: O
3|°ba|: (o) oufer: 4
9lobal: O

Relatedly, what properties and methods would a Python class representing a frame object need?

What about a function object?
Frame C(Ciass

at++ribote:
-parent
-variables /valves

methods:

—lookop (input: var rekurn: value)

FunNncTiON CeAasS * can cneck i Something 1S

a+;""|?°‘je; R canabel--) ’
-enclos v
-parametrers (1€ nas the ca\) W‘e""‘°°l)
- body
methods: methool

call -
-call (input: arguments) & pgthon has custom —— ¢l

6.101 Recitation 19: Lisp part 1

Question 3: Rewrite each of the Python expressions below in Scheme.

example 1
(5+4)/(7-3-2-1)/2

(7 (7 (+su) (=73 212)) 2)

@ # example 2
(lambda x: x*x)(4)

((12mbda (x) (%x x)) 4)

@ # example 3

def area(r):
return 3.14 * p ** 2
x = area(5)
y = X
(Aefine 2rea (I1ambda (r) (¥304 v «)))
(deeine x (2ce2(s))
(detwne 4y x)
example 4
def four():
return 2 + 2

four()
(de€:ne Four () (+2 2))

four

77

11/20/24

N/2s/24

Ly 1 - : T cial Corm

WHY SCHEME?

‘9ood prachkee +to See Simil3r/oAE. b/ languages

- Vo looping iwn scheme! recorsion ownliy.

- vsefol For uvlolersl'and-'nj +est+ cases

6.101 Recitation 20: Lisp part 1 Wrap-Up 11/25/24

Question 1: For each of the four statements written in Python below:

-What is the equivalent expression written in Scheme?

-What will the output of interpreting that expression be?

-How many times will evaluate be called in the course of interpreting that expression?

Note, example A has been completed for you.

I

.
)

(define x 4)

.
)

)

)

Example A:

x =4 ; provided Python code
; Scheme equivalent

output: 4

Example B:
y=x-1

(1ambda (x) (*x x))
Scalls eval. once & Stores the body

(+# 3 4 x)
> eval. & times (looks @ each element)

; # calls to evaluate: 2 - why? - evawates x & evaluates 4

output: (detine y (- x 1))
calls to evaluate: 3

Example C:

square = lambda s: s * s

output: (define s (1ambda (s) (* s s)))

(eval whole thing, +then y & (-x l))

(define (square x) (% x x))

calls to evaluate: 2 (for deEine & 1ambol2) calls: 1 (just sets Square 4o booly)

Example D:

z = square(x) + square(y)

output: (de¢ine 2 (+ (square x) (square 5))

calls to evaluate:

17

(square x creates new €rame & calls eval. many +mes
Cor +he body, EFc:)

(evaluator oloes a lot vwder +we hoodl)

6.101 Recitation 20: Lisp part 1 Wrap-Up 11/25/24

Question 2: The following Scheme code comes from test_inputs/21.scm. Convert this scheme
program into an equivalent Python program.

(define (call x) (X)) fuwckion o bject

(call (lambda () 2)) = sPam = l2mbda funct.
(define (spam) (call (lambda () 2))) function object seam()
(call spam) 2 call (spam)

(call call) Secweme Evalvaton Erve v
(call) Scheme Evalvarion Erron

Question 3: Syntax errors occur when code breaks the rules the rules define the combinations of
symbols that are considered to be correctly structured expressions in a programming language.
Syntax errors are generally caught during parsing and prevent any lines of code from being
interpreted / evaluated.

Discuss with a neighbor: what are common kinds of syntax errors in Python?

-indentation

. M-'ss:ns & Colon

Thinking back to our Symbolic Algebra recitation last Monday, what are some examples of
things that would cause syntax errors?

-missing round beackets
»can coont parenthneses. but don’t have +o.

As a reminder, our variation of make expression last Monday handled expressions with:
- nonnegative integers, like 3 or 10

- single-letter lowercase variables, like x or y or z

- fully-parenthesized binary operators, like (3*x) for +, -, /, and *

- No extra parens or missing parens

- ignores spaces

SCHEME
exer

e D

S-expression
expression

/\

Var (ste) / \

. base
(int, Cloat) exp seecial
(func args.-) form
evalvate everything (deeine var expr)
built-ins (12ambd2a (param.) ex
+ -/ w<> _c”"a" :)
[]

<= »= not #¢t 2nd

#F equal? or

6.101 Recitation 21: Scheme conditionals and recursion 12/2/24

Question 1: Rewrite the abs function using a lambda expression in Python.

def abs(x):
if x < 0:
return -x
else:
return x

abs = 1ambda x: -x if x<O else x

Question 1a: Now write the abs function in Scheme.

(deFine 2bs (lambda (x)
(iF (< x o)
(% -1 %)

x))

Question 2: Why do if, and, and or need to be special forms in Scheme?

simportant +hat both conditownals (T/f) don-+ get evaluatred

-if: only ove of Hwo ophons shouid happen

candk & ov > Shonrt circott (stops early)
- 3nd: StopS as scown as F
-or: Stops 3s Seon 28 T

Question 3: Write the sign function below in Scheme.
def sign(x):
if x < @:
return -1
elif x > 0:
return 1
else:
return ©

(deFine Sign X
(i (< O x) -1

(i¢ (> O %) 1
0))

6.101 Recitation 21: Scheme conditionals and recursion 12/2/24

Question 4: Write sum_squares below in Python without using loops. This function should
return the same input as the original version for all integers n <= the recursion limit.

def sum_squares(n):
total = @
for i in range(n+l):
total += i*i
return total

def sum_squares(n): # no loops!

if n==0:
retorn O
return nA*wn + sowm.squares (w-()

Question 4a: Write sum_squares below in Scheme:

(detine suw.squares w)
(¢ (equal > n ©O)

(o)
(+ (sum.squares (- wn 1)) (%, V\.‘)

Question 3a: Write the sqrt function below in Python without using loops. This function
should return the same input as the original version for all integers n <= the recursion limit.

def sqrt(x, epsilon):
guess = x / 2
while abs(guess ** 2 - x) > epsilon:
guess = (guess + x/guess) / 2
return guess

def sqrt(x, epsilon):
your code below
guess = x/2
if 2bs (guess ** 5 _) > epsilon:

suess = [3“355 + x/suess) /2
refwvenn sor t (30 ess. ePS-‘lon)

rerurn guess

Question 3b: Write the sqrt function in Scheme.

1214 (24

ExPR
Atomic S-expr.
var // ~~
(int. Elo2t) basics special form
expR
eval B (deP.‘ne, 12m bol2a, if, a"d' °F)
(ﬁl"; efﬂ)

PyTHON - SCHEME

-remove looPs
- replace vars
-if: _if _ else

6.101 Recitation 22: Linked Lists in Python and Scheme

12/4/24

Today we’ll be working with lists in Scheme, which will give us some practice with recursion

and linked lists.

The table below shows the built-in list behavior that you will implement during Lisp part 2 and
how it relates to Python list and linked tuple behavior that we have seen in recitation previously:

return

Scheme list input type Python list linked tuple
(list? x) any boolean | isinstance(l, list)
(list ...) sequence<any> linklist [...] make_11(...)
(cons x y) any conscell | [x, y] (x, y)
(car x) cons cell any x[0] first(x)
(cdr x) cons cell any x[1:], or x[1] rest(x)
(append ...) sequence<linklist> | linklist sum(..., [])
(length x linklist int len(x) 11 len(x)
(list-ref x i) | linklist num any x[1] 11 get(x, i)

Question 1: Write the sum_1list function below in Scheme.
x is a flat list of numbers

def sum_list(x):
out = 0
for i in x:

out += 1

return out

(dlefine (som-\ist
(if vot x
(o

x)

RECORSIVE:

return (0 i f viot X €1se x[o] + som_1:S+ (x Ci:2))

(+ (car x) (som_list (covr x))

Question 2: Write the sum_nested function below in Scheme.

def sum_nested(x):

out = 0

for elt in x:

out +=
return out

(def (som-nested x)

(i¢ (equal? (length x)

@)

x is a nested list of numbers

sum_nested(elt) if isinstance(elt, list) else elt

6.101 Recitation 22: Linked Lists in Python and Scheme 12/4/24

Question 3: Write the subtract_elts function below in Scheme.
def subtract_elts(x1l, x2):
x1 and x2 are flat lists of numbers that have the same length
result = []
for i in range(len(x1)):
result.append(x1[i]-x2[i])

SCHEME:

(deine (Subtract_elds x21 x2)

return result ' (
(crefine (loop i)
REcURSION:) ¢ . (enath x1))
—_— i¢ (equal? i v x
Aef subteact_elfs(x,, x2): ' ' av ' 2
0)
|
def loopli) : (1:s¢
it iz s len(x) ! (- (list-reg x1 i)
reruen [(list-ref x2 i)
etse: ! (loop (+ i 1))

retven [%(0id - %2037 « loop(iti)]

"

l
l
|
l
[

)

Question 4: Write the find_max function below in Scheme.
def find_max(x):
x is initially a non-empty nested list of numbers
if isinstance(x, list):
best = find max(x[0])
for elt in x:
best = max(best, find max(elt))
return best
return x

12/a/24 - 1ast rec!

WE LEARNIED:

.data stroctores (dict, sets, lists, itevables, geneératers)

- funchional Programming
‘qraph search

+ r@cursion

cclasses /innerirance

‘- languages /interpveters

LookiNG ForwARD:
-use imports
. pytnon Standard lib & exterwal pa2ckages

6.50S7 (mere math)
6.100» 6.101-» 6.lIo2-» 6.104

web applic2 hons

6-106 (ophmization)

lang. implem.

Ge.10 .12

operaling Suys.
4 9 Sy 6181
Comp-—drchiteciure
s 019026.19136.192 9 6.55 31

Heorercal C.S. 6120 6.121 6. 122+ 6.140

COMMON EFFICIENCY BUGS:

-superfluous Compwtation
- Subopkmal Aata Structure olesign setx =se+(x)

. subophmal 2lgerithm des’'gwn (sAn)

monre
systems Cweb

6180 (6-104)

secorsfy
6160

netrworks:
6-3042

X = iSH ()

—_
cownwversions blt
+types are LINEAR

ethicsy

policy HC\:

6.8 6.4S0, 6.4SS. 6.4S?
6.cHd0

o2at+abases:
6.5831

(video games, music, etc)

sSensovs:
6.182, 6.200

Da+ta:
6.C35. ©.300

AI(ML: 6.390 > 6.412,6.413,6-41]

6.101 Recitation 23: Looking Back & Looking Forward 12/9/24

Question 1: Classes + Environment Diagrams
For each example program below, write what the output will be and draw the associated environment diagram. If the
running the program would result in an error, write error instead and describe the problem.

STACK HEAP
example A A ciacs
; classlA: 1 oF a1~\. s -var |, i+
cls_var =
3 al = A()
4 print(al.cls_var) # =>__ 20)
instance =
example B
1 class A:
2 cls_var = 10 Srack cuaksear
3 al = A() oF AT~ cis-var : ;:‘o‘-
4 a2 = A() o 1
5 al.cls_var = 20 a2~
6 print(al.cls_var) # => 20 'j
) instance [
7 print(a2.cls_var) # => _io as-var — |, 0¥
example C . .
NnsSran0
1 class A:
2 cls var = 10
3 class B(A):
4 cls var =[] Stack hezp
5 - _C\2SS 9] in
6 bl = B() 2 [[cis-var —— '(04
7 b2 = B() bl
8 bl.cls_var.append(A.cls_var) b2 C\a5S [o
9 print(bl.cls_var) # => [io3 cls- var——
10
11 print(b2.cls_var) # => 107 ins+ance
@ # example D instance
1 def global fun():
2 X = 10
3 class A:
STACK
4 def a_fun(self): obal - fon HEAP
9 = N fuwnce
5 return x 2 \ s
6 X = 20 s
7 return A()
8
9 a = global fun() class .
10 print(a.a_fun()) # =>
func S
sel\€
refrurn X

6.101 Recitation 23: Looking Back & Looking Forward 12/9/24

@ uestion 2: Recursion + Iteration + Generators
For each example implementation of the map function below, what would the output of the
following program be? If this would result in an error, write error instead.

def add_to_all(map_func, k, inp_list):
return map_func(lambda n: n + k, inp_list)

print(add_to_all(map, 3, [1, 2, 3, 4, 5]))
print(list(add_to_all(map, 3, [1, 2, 3, 4, 5])))

example A
def map(f, inp):
return list(f(x) for x in inp)

example B
def map(f, inp):
yield f(inp[@])
yield from map(f, inp[1:])

example C
def map(f, inp):
if not inp:
yield []
return
yield f(inp[@])
yield from map(f, inp[1:])

example D
def map(f, inp):
if not inp:
return
yield from map(f, inp[1:])
yield f(inp[@])

example E
def map(f, inp):
if not inp:
return
yield f(inp[@])
yield from map(f, inp[1:])

6.101 Recitation 23: Looking Back & Looking Forward 12/9/24

Question 3: Backtracking with Tent Packing — see readme
What are the success base case(s)?

What are the failure base case(s)?

What are the recursive case(s)?

Write a description of a high-level algorithm you could use to solve the problem

Question 4: More practice

example a write the body of an infinite generator that will produce the desired output below
def fibonacci_generator(a=0, b=1):

for i, fib in zip(range(9), fibonacci_generator()):
print(f"fib({i})={fib}")
fib(0)=0 fib(1)=1 fib(2)=1 fib(3)=2 fib(4)=3 fib(5)=5 fib(6)=8 #fib(7)=13 fib(8)=21

example b -- turn this generator into a regular function
def flatten(lst):
for item in 1lst:
if isinstance(item, list):
yield from flatten(item)
else:
yield item
nested_list = [1, [2, [3, 4], 5], 6, [7, 8]]
print(list(flatten(nested_list))) # [1, 2, 3, 4, 5, 6, 7, 8]

6.101 Recitation 23: Looking Back & Looking Forward

Question 5: BFS vs DFS + recursion

What will the program below output?

def dfs(graph, start):
visited = set()

def dfs_recursive(vertex):
visited.add(vertex)
yield vertex
for neighbor in graph[vertex]:
if neighbor not in visited:
yield from dfs_recursive(neighbor)

yield from dfs_recursive(start)

Define a graph as an adjacency Llist

graph = {
‘A ['BY, 'C'],
'B': ['D', 'E'],
"¢ ['F'],
'D': [1,
"E': ['F'],
"F': []

}

Perform DFS traversal starting from ‘A’
for vertex in dfs(graph, 'A'):
print(vertex)

For an extra challenge, write a recursive BFS version below. What will the

printed output be now?

12/9/24

6.101 Recitation 23: Looking Back & Looking Forward 12/9/24

Summary of Readings Since Exam 1
Recursion

e base case, recursive case, combination

e recursive cases are smaller than original

o helper functions

Recursion and Iteration
e some problems naturally iterative, some recursive
e recursive patterns
o list-like: first/rest
o tree-like: children
o graph-like: neighbors
recursive helper to accumulate partial results
e recursion for DFS
generators

Recursion with Backtracking
e a generalized graph-like search with constraints
e typical structure
o success base case
o failure base case
o recursive case that reversibly tries possibilities

Custom Types
e the power of abstraction
e Python's class keyword and the environment model
e class vs instance attributes / variables
e two scoping paths: variable lookup through frames, attribute lookup through dot notation / classes

Inheritance
e subclasses and instances
e inheriting vs overlaying methods, leveraging polymorphism
e lifting shared behaviors to superclasses

Functional Programming
e converting imperative-style loops to functional-style recursion
e converting classes to nested functions
e memoization

