[214125 - 457 ceass - Prooes]

PROOF: wetwhod of 2scertaining twe Froth
> experiment, evidence, expents, jury trial, stabistical analys:s

* (viext lec-) -

MATHEMATICAL PRooF: verificationn of 2 proposition by 2 chain of loqical deduchons frowm 2 base set of axiows

— PROPOSITION: Statement Fhat s +vrue o false (ex: 1=1, ice iS cold, i can fly, erc.)
-NOT proposition: i will PBSS Hhis CIBSS™, * Hhis skatement s False. e seif -referential (ereaks 21)

=> PREDICATE: statement whose t+roth depends on 2 variable
- v +V\‘+"|| 'S P,-.’Me ‘v [Pred:ca*e)')

- :For nzt, NZ+n+ HI (s prime” (pmpos.‘f-'on) 2
n NErn +4l prime?
> ex: Vne\"\] , n2+n +4dl is prime (propositon) o “) v
o o -'-'n'\ \/
for ‘210 l Y3
(universal “the natoral v
quantitier) nwumbess” 2 uz
(set+ of vioum - . .
neg #) . :
* 0 is natural 39 (6ol N
in Ha's classt 4o 1681 - y4)2 b 4
ul Q124 4l +y) x
ex: ‘a¥+bY+c?=d9 has o pos. inreger solohonn- Tor F2'
.comjectored by Evier (1769) #* fook over 200 yrs * to refore ¥, just veed to Find
.d:spmved bs Noam Elkres (I°'87) o saive one incovwvect

—

.oz 95800, b= 217519, €= HI4S60, d= 42248

ex: Goldbach's conjecture: every evern B> 2 (s sum of 2 primes

= ConSECTURE: hot Sur ¢ ol

.20=13+4+7

ex: Poincave’s conjectur: prove +hat rabbits are spheres (things can be deformed into other Haings wlo +ears\
.solved! by grigowi P-

Four color Fheorewm: regions in map cawn be colored in 4 colovs souch that adjacevd vegions have d:FE ceolons
“+inece is 2 Mmap w/ 2+ least 3 regions for which 2 colovs 2¢€ ev\oushL UL
|

2
I w™Maps i
S twree colovs enovgh For 3t 2P < VYV

3 §-cwlor theorem pvoved in 180os
in 12726 via Hweorem-pvoving seof+wavre

ex:

» Yy-color +Hweorem proved

ProPOSITIONS from propositons: Combwe w/ logical oplratons

P NOT, ANMD, OR, XOR, IMPLES, IF
: window or 2isle 7 = XoRr

‘exclusive fexclusive Ex:
AAB AvS ot ® and” 3 C3n only g+ one ov ofher
AlB |A2wa B | Ao~ B | AxorB | A imprres 8 | Aicer | A xawd 8
T|T T T F T T EX: coffee ov +e2? > NAND
T | F F T T F F S one or twe other or nowne
F|T F T T - F > just vnot both
F|F F F F T -

. . v s . ‘4o be xov wnot 4o be?
IMPLIES: A impires B, A =8B, 'A—~>B"

5> if A isT, 8 swould be T
¢ wot A
> if vot A, olon+ worry 2bout B> will be T l: :
RULE: if weodl, then wear PNk e l
wed: T Pink: T V

T F %

F T v e vruve doesnt apply teday

€ g ov &



SET: collechon of objects
> onder doesnt matter
- no duplicates

ex:A=§6,1,.2, 03 =§6,1,2.02.08 = %2,1,6,0%

N=go.1,2..-3
Z =%0.\, -, 2,-2,3...3
@ = rahonals
g = empry se+ =E3
@ = £2,83, 43, @3 &« noTe: 3 s NoT elemens of B i IS in 2 set in B
SET NOTATION: 32 = ‘there exists” QuEsTIONS: B € 82 v > in B!
XEA  xi ent "
€ x is elemewn OF A ¢ Q 82 / ¢ is sqbsei— of every se+
XFA ..‘ x NOT element of A" ¢ c A? blc +here's noHaing in e
ACB ‘A subser of 8" (every element v A
is 2ise v e) ¢€-A7. b 4 > viot in A
union: AU B (elements e-‘}her‘)
intersechon: AN B (elements in both) AUB= $6.1,20, §3,4%, 13
ser diffecence: ANB  (in A but wot B) ANe = §£23
or A-B AN B =§6,I,O§

s of a set which sah'sfy predicate

§1.2,342\ §1, §3,433 = £2,3. 48

set builoler netakion: element.
SV\GN | iserime (v\)g =$2,35,7...3

A X\OM: proposition We 3ssume s +rue
ex: for every point P & line £, with PEL, 3 unique line L' Berough p paraliel +o £ (Euclidlean gea.)

5 ser of BxiomS 'S consistent whew you CANT prove €alse = troe
5 setr of 2axioms ¢S comple+e when every vrue proposiion Can be Proved From 2xioms

£2/6/25- LecTURE 2 - CoNTRACICTION + INOULTIONT] % be suspiciouvs whew pel
use 2bSclute terms

LOGICAL DEDOULLTION:; g
Combine +rue Statrements wl okher +rué Statrements # stare proved props.

» wmodius ponens: ((Po>QR) and P) —» QA ((P>Q) andt Q)—F You're vSng

((P>@) and (@2R)) = (P2R) .\ reiy onr high School

P | @ | ((P>a)and P)—Q

M T T T T T T (Foraise) » P reassnable  3xiowms
T F F F T T F

F T T F F T T

F F T F F T F

FONDAMENTAL PrRoor TECHMIGUES:

THM: 2xeS. P(x)
PF: we’ll show +wat [some vaive] wovks,
Th's value s im S ble Lreasowns’]

and P(x) is +roue blc (reasons’].

PROVING Z (Hneve exists):
THM: 3neM. (nis prime 2nd »n 710)
PF: 11 is prime 3nd 7 10 ©

ProvinGs ¥ (for 2n):
THM: ¥xelR, x2-6x > -lo
PF: suppose X (s real H. & introduce generc example (aive it 3 nawme)
(x2-Gx +a) = (x-33* 20 ble squavesave 2 o

So x2-6x2-92-10 O ¢ . i:.cates prooct is done!



ProvinGe P->Q , direct:
THM: if v is moultiple of 10, thewn n s 2 wmolt: of 2

PF: assome P; wts Q

2ssume W (S mult of 10: nzlok For some int 3

w= 2:(Sk), So rn is mult. of 2. ¥

ProvinG P-=2Q, contrapositive: P> Q is equivalent Yo F 5 B

THM: ¥nEZ (n2even) > (n even)
n=2k +1 for some KEZ

PF: suppose nEeZ PF by contrapositive: nisdk?+H K]
2ssume Q ; wts P z2(2k2+2K)+)
= odd V
3Ssume W S odd; WTS w2 s Odd
PF by ConTrACIETION: ‘indirect PE"! THM: JZ s irrational
IDEA: Show P s wnot fFalse PF: PF by contradicton: assome JS is rakounal
TECHNIQUE: +o prove P, S+avt by 35S0 MMy P. so J3 = % nere o bEZ,bED,
+hen, Find 2 contradiction - .
anck § i lowes+ terwms i.e. & & b have

i.e.Some other start Q +nat S

both T & F, conclude P= +roe no common Facters 7 1

o)
2= 73 ® 2b2:a?s alis even

®ov '+ usvally O is @uen I oz 2k Por Some keZ

kLwnow what +Hhe contradiction 202 UHk%y p2=2k?2
is +1 s F-1e+ +h
Hw o ::"’ :: Fote ¢ =b? is even > b s even
wA e .
2 ° $0, both & & b have 2 as 3 Factor

Hhis cowntradicts a/b being in
lowest terms =x=

so JZ is not ratonal. U

% look @ Wigh-level pvoof outline €irst
THM: ¥nEZ. w is Ffooish iff v+l is bacseme before looking @ Ferms

PF: Suppose nE Z PO Q means PP & @>P

wWTS (n fooish) > (n+l barsome)
(n+l barsome) > (W Fooish)

fiest 2SSume n is fooish [WTs: wel isS barsome’l

instead, assome Wilis barsome [WTS: v+l s fooish)

n(n+i)
THM: ¥ nEIN. l+2¢...tn="25"
nzo: o=o(1/2
?
net 1= =)= n l1¢2+...+wn = nint+ti)/2
=2 - ?
s RS n+l (42 #... +n+(nel) = (n+1)n+2)/2
wn=3: 1+2+3=3(4)/2
=y: y=y(s)r2
et nin) y 2 baedln+2)
n=s: |+2+3+4+S5 55 (6)/2 — + (n+1) = >

-
wv 2 wnt2
=z +1 = 2 \/



INOULCTION PrRINCI PLE: ok!

if P(o) awnd ¥neMN. Pn)> P(n+|)
then ¥nelN. P(w)

P(»n):=

142 4+ ... +nn=wn(n+1)/2

TUM: VnEIN, P(n)
PF by induction, using Pin),
RAsE CAseg: WTS P(o): O=D(NOYI2 V

N DUCTIVE STEP: SupPos€ n 2 O 2wd
assome P(n);

(2/mI257] - lecture : c2sework + strong indveton

EX: 2V x 2™ gapdev\ sv._.&
-1 statvue in widolle cell

.Ccovev rem3aining cells w/ L-trowminoes

we-did: | we want:
PLe) Plo) %% part of checkl'st

P(o) > PL1) f0)
PU) > PL2) P(2) a2t person needs
PL2) > PL2) ppsi} to go througl
P(3)» PCu) Ps)

assome |+2+...+wn<c n+1)l/2

WTS 1+2+...+n+ (vt 1) = (nedn+2)/2

1¥2+ ... %N+ (ne) = h(::_‘) + (nt1)

WTS P(vn+1).

B e

= (V\"’lz.)(\ﬂ-rZ) by 2laebra

blj indouckon, we concivade P(n) s +roue

For evéry nZzO

P(n)i= it is possible to Fill whole 2™ x 2" gardew (except statve in meddle) with  L-+vommoes

Q(n):= Solve 2" x 2" with one statue anywhere

P(o):
P(a):

P2): Uxy @ v

PL3): 8Xx8& ethnk of i+ 2as 4 seperate HxY cases

1xl( 0O (no work to do)

kindouction s vseful for tevative, repetitive
things. 31l you have +o expl2in iS going

from one step 1o Hre others

-set vp so tha+ i+ doesnt get repehhve

- inductive proof has strong relatonship
w/ recursion

How To kNow whewn +o 5“"‘3\!\3“«6\!\ P+o Q7
-}akes practce, expenience, cleverness
- you just wneed to kvow how +o wwte proof

ProoF 8Y C(CAsEes:
THEOREM: P is *rue.
PF by c25eS on the +ruth valve of C:

CASE 4: assome C is +rue. +Hhen P is +rue blc...
CASE 2: assome C is faise. then P is +rue blc...

z'\

Q(o) vV
Qaly v
Q) v
Q(3)

Q (u)

Q (w-1) = Q(n)

2Ssome we kwow how to solve 2WVN-ly 2=l
minusS owe cell.

WTS:
2'\

£

=

i

by Q(n-1), can €Il in each

quadrant (w/o +the misSing cell)

| - |

Bu p

THM: (A>8) ov (B>C) is alwaus +roe.

PF

by cases: B is either +vrue or False.

CASE 1: B s +rue. then A-> B is +rue,

CASE 2: B is False. then B-(C is trve.

so formoula is S#ill true.



EX: & ppl, Bach pair either friends ov Strangers (goes boHa ways)

THM: fhere will always be 3 ppl who are all friends or all stravgers o ><x

PF: pick 2 single person . +hos p either was

CASE 4: p has 23 Ffrievnds

case do: some pair of a,b,c are Eriends
- +hen p 2nd these 2 formm 2 Hridngle
(2se 1b: a,b.c 2re all Strangers
-then 3,b.c is 2 ved +r.‘av\gle
CASE 2: p has <2 €Eriends, aka p has 2 3 Strangers
by Same argument 25 case 1 (with whi te 8 red swapped)
3 white o~ red A v
Sivice one of c2se 1 or 2 must happen, the heorem holds.

% c2ses must be exhauvstive (inclode 211 possible)

23 friends or wvot.

PF. by c2ses, gewneral form:
THM: P is +rue

PF by cases:

c2se 1: 3ssume C,.

c2se 2: 3ssume (C,. twewn P

.

c2se K: 3ssume Cg +hew P

2F least one of Ci,Ca2, ..

(22, Ci-.y Ce 2re exhaovstive)

Axiom oF lnpucTions :

16 P(n) is 2 predicate defined over nEN,

¢ PlO) iS +rue, awd

for 21l 020, (P(n)»PLn+)) is +vue,

Thewn P(n) s trve for all w EN

* in principle,

Axiom OF STRONG lNnpucTion :

I¢ Pln) is 2 predicate defined over nEN,

¢ PlO0) (S true, 2awnd

for 211 WZO, (PIOYAPINAP(2)A .

Then P(n) s +rue for 211 w EN

EX: Start wl 2 Stack of n blocks. vrepeatredly fimd a sStack w/
f.q with +otal siee p+q=k, €arning p.q points.

2
u, 4 16 points
13,1 = 3 PQ\'V\"'S

-

28 points
2,2,%, 10— H pts

ZeZ.2,1,1 = 2 pts
Velo 0,0, 0,0, 1= 141+

+wen P (s +rue blc...
s +rue blc..

. Ce most be +ruve ble...

ownly ever need Strong indwetion

APINY)— Pn+1)

Aneed +o check that possibilities
acre exhaustve, even f +he
cases are +hoousands.

(s +rue blc...

* inndlucon S unrolling
2wd proving wore P(n)

P(o) P (o)
Plo) » P(1) P(1)
P(1) > P(2) P(2)
Pl(2)>P(3) | P(3)

p(3)» P [ [ ]

kge+ fo make more assumphions (more helr)

PF. by Strong induction
BASE CASE: P(0) is +rue ble .- -

IND. STEP: assume P(o). P(1), P(2), ---
WTS: P(n+t)

,Pn) 2re 2t t+rue

% Can be Shrong induction even we just use PLn)

K >l 2wd spli+ into +wo prles

2 ] * il

1,7 =» 7 poinis will_2lways ge+ 28 pts.
oy

L= 6 no wmatier how Yeu SPI.{'.

1, 1,1, §

1., 1,1, 424 28 points GUESS: Stack of size n

el d, 1, 2|Nass Bields

ittt 33 142+4...+(n=1) ets

Votedy Y, 0,1,2 52 N EEE—

VL, G, 0,0 J (V“()("\)



-1)(wn)
THM: Stack of sige n 3lways Yillds 1424+...+(n-1) pts % % VARIABLES must be defined :
) . VxeMR(---)
PF. by Strong induction
(n=1)(n) 3yeR(--)
P(n) = 2 stack of Size v always yields exactly — =2 pPoints

P(n):= +3lk aboot »n
we’ll prove Vne&MN. P

or: Vvwnzi., P(n)

ey ()
QASE CASE: P(1) is #rue blc stack of size 1 gives = =0 pts V kcan Show Pln-1) > P(n) ow

P(n) > P(n+1), whichever S
Assume P(),P(2),..., P(n-1). (2ssome v Z 2) erewrite in tontext easien

wWTS: P(n) /
WE DO

(-1 (k) . | WE GET
Assume size k pile (For every leken) qives — o points. o)
(n-1) (") P(N~» PL2)
WTS: size rn pile always gives exactly — o points (PmAPLz))—vP(s)
start with pile of size vz 2. (PUYAP(2IAP4)) - P(4)

Lsing a1l S3Y first move is P +q=wv, earwning p-q points [E El\
2SSUMEHONS | L oo (P-1)(P) 2 (a-1)(q)

blc don‘+ r 2 (e-nyte) (499
PN 2
sSize (p-1)(P) -1)(¢
kwnow _‘_°+a( : Pq + > + (aq lz) q) P+$
2lgebva
(Pra-1)(p+a) _ (n-DW)
2 2

L 2/13/25] - lecture Y - state macwines

STATE MACHINE: 2 state machine is defined by 3 (olleckon of states, 2 specified imiHal state, aand

for each stare S, a Set+ (possibly emply) of possible trans’tions to other states

. end
:::;;- AlB|c AlB IC ]| Slare:

D|E|F — |D]|E|F
Ex: the 8 pueezle nlo 6|H
‘horizontal/veriical suding in empty Space
ciates: (DABEFE C H 6 *) i.e.3ll perwmutations of these A symbeols
iniki2l: (ABL,0,EF HG, *)

iransitions: steps according +o the game

* 2n execotion of 2 State mackine /S 3 sequence of states, s+arhng @
Se»S. > Sz >...—»Sk > Sk4r ..
ind 31

2 state (S veachable € i+ is part of Some execuhon

in'H 3l state, following trawsikons,

PreservelD PreoicaTE: 2 predicate P(-) defrned on states, suvew that
for every state S— e, i€ P(s) is +rue, then P(H) is true

EX state predicate: A in top left
- hot preserved bic A dees not alisays Stay m top (6FF

INVARIANT: State predicate that is +ruve for all reachable siates ownly if the property (s +roe in s+art shate.
'\vwa";"*

ciple > THM: if P is 2 preserved property and Plinkal state) /s iroe, then P s invariant
P(t'ﬂ o
TOEA: find 3 state property P such that:
- PIABCOEFHG % is trve
- P is preserved
- P(ABCDEF GHA) is false (unreachable Siatre)

iwvariant (reachable Siate)

INVERSION: in 2 Iist, 3n inversion S 3 pair of ewntr/s such that the

I2avges~ entry has 2 smaller~ index in the s+,
Ex: [2.5,3, 4,13 | & 4, S8WY,



LEMMA: when swapping two unequal adjacent elements of 2 list, the # of inuversions

changes by % l.

PF: [Ql PR ak-(, Ak, Oty, .-

.,Qm-]
.., 0n]

onlg (ak, Ok+) changes their reiative order.
i€ Ok <Oke, Hinversions increase by 1

[oav, ..., Rk, Qk+1, Ok, .

i€ Ok ? Okqer, H#inversions decrease by 1 0O

P(s) := vrewmove %, count Hinversions, +vrue if odldl.

PIABCOEFHG #) = # inversions (ABCDEFHG) is odd
P(ABCOEFGH %)= O

PF through sta+e machines
Ex: CLAIM: Pis preserved.
PF: suppose we have 2 +vransition sS~>¢,

2and a2ssome P(s) s trve. WTS: PH) s +vue,
CASE 4: S=2¢&t is 2 hori2owntal siide

DABFECHAG
DABFECHGH

tw's jost sSwaps % with 1etier nex+ fo i+. So after removing #, \rSts are sawme.

By P(s), #inversions of +he list was odd.

Sl truve for 4, Since reduced Itst didh+ change.

CASE 2: s>t is 2 Lorizontal sidle. DAGFECH®G

DABFRCHEG
# wmoves +o other side of 2 symbols
xy e 2 2djacent swaps

So #invs changes
by 1, ie by 2,0,2

yex

Since odd for s,

adod + Fo.2,-2%
IS stll odd, So
odd for +.

St moust be horivontal or vertcdl, so cases are exhausitive.

Since P(in‘t) is trve & P /s presevved, by invariant principle, P

Since unreachable, ...

DEF: 2 state machine termina+es

Der: 2 final stare is 2 statre

Der: 2 derived variable is 2

DeF: 2 derived variable £ s
weakly decreasing: z

IF £ is 2 derived variable s.t.:
-€(s) iS 21ways in N
- s strictly decreasing
+hen Hie state machné jerminates
after af mos+ F(ini+ial S+ate) steps.

2 | s

r'S invariantd,

if there 3re vno infinite executons,
wl no outgoing transihowns
function mapping states +o numbers,

sirictly decreasing when for every S, f(s) > €(+)

ex: F=17 @ state O

Se —S, — Sz—'S;—?& «— ¢ cant qo lower

Han O, 2awd 7t c3an

] [ Y also end.



SIMPLE SORT: ex: 21 5 3 4
list of w distinct integers

\ 2 §3 4
STATES: permutarons of those inteqers,
| 2 S 4
TRANSITIONS: (01,02, -, On) 3
if Q:2Q;41, can +ransihon 4o (O, -.. Qi4(, O, ..., a..) |2 3 ug

CLAIM: 3lways terminates on 2 sor+ed [(rs4,

if wvo more wmoveS poss/ble, then list is sorted.

(Du.n-, On) w/ no moves 3vailable means A, <az<--- <Qn

So # steps is £ £(initial state)

Worst Ccase: every pair s inverted,

in which #inus S L;‘M

£(ai, .-.,An) = # inversions

£ was valves in N : yes.

f iS strictly decreasing: in Fact f decreases by exactly 1 on every step.

L 2120l25] - lecture 5-suoms (closed Forms)

n
Z 12 2124224 ... +n?

w’ is an wit degree worth more than 2 Harvard degree?

@ ®

year 1. $1 T year 1 $1
year 2 $2 =$2(1+P)""2 year 2 $1.3
year 3 5.3 :$3{|+p)“'3 year 3 s(l.s)" = 1.64
: . Ve : : "l x=1.3
year v 3n L n(n+) year v $(13) N an X1
total earnings after n years: Hz &, H 5 2 fotal earmings af+er n years: M; sz__:ox‘ T e

How To FiINO ANSWER?

Toor 4: PerTurREATION METHOO

w=lo: $sS
w=20:32l0
w=230:3465

Hz142 ... +Wn

Ren+m-y+(n-2)+ ...+ 1

2H=(n+)t(mel) s - + (Mr1)z n.(n+1), So|H= Lz") nw=yo: $820
Mzl+rx+x2p... +x"! n=lo: $uz
e M= X +X24 .00 con o0 +RN w=20:$ 630
XY -1 - .
(x-1)m= x" - so M=% | 77 wz=30:$ 87229
ce w=yo: $120393
2.59/o

POINT: $4 /s worth > 31 tomorvow (Wio rate e)
$1 year 1=$(1+p) in year2
=$(1+p)% in year 3

bd |
=$0+0)" " in year w

w -t - x"
K =

Zx 1-x

K:o

sl noo ol LI alntid(zast)
L :le : 2 Z“ 2 A

K=t |-x t



n ) “ s v
fotal earnings T=E| L) (+e)" Zlc‘.lv-w) ' «cal\ T3 =Y

‘5-“;=Z| i's‘l = ‘.‘I-ns
=S

STy+24y*+343+... +ny”
4S = 5"-&233-' e (m-)Yy" 4 nsn'”
nat

(1-4)S=y +y2+y3 4 ... +y™ -ny

sy(1+y+42+ ek g™ ) ot

R Rl wet _ 9o (a4 g™t e agnt? Y-(ne)y"t Nt
BT = = — [S= ry
-y (r-9)
TooL 2: ANSATZ METHOD (guess & check)
w gquess 3 .
=2 i* an’ + bn*scna+d = 3"
i=l
n=0: 0O=4d \
a=% n
w= 1: |:a+b+c+o\ '; TﬁSﬁ
n=2: E5=8a+Hb+2c +d b=z sz
w=3: 14z272a+9b+3c+d c=g -

e formuld works for N=0-3, bot
wust use induction v prove Ffor vrest

£(x) =% . . RE R
P 2 ER f" Ax = [Z""”z] = Z(w'*- weakly increasing
S' f=t - ) 3 ) 3 e arx, ;ls\zpc‘)
.
I Sw%“ %XNEED TO CHECK:
a2 3 4 § wnimwn

f is & positive
F) +€(2) . $60n) £ rF(x)dx:=I &sum of Strips iS @ most som under corve -isS F weakly incr.
' n
S-f(nY£ I whwere S:tg'cm

S ¢ I +£(») I- Y'“F(X)A*

Cl(2Y+F(3)+-- +F(n) 2T
S-€(HY 2T
S z T+e0)

putting lower & upper bound together: L+8N<eS < T+ F(») when £ is positive & weakly increasing

Y CHEE RN I O DR R Iy
a3 - & =§n3"‘ +07 -2 Creiative ecror Shrinks 25 n increases
o B
DEF: §fwng means that aze an
2 32 ?%
S(nY= 5w +S(n)
S(vg 213n3'245(n) e yw-2/3
Lim —(ﬁnzla) = Lim =z 32 =1+ 2(3n3/2
3 3
EX: S=&5i FOY=3F 5(.')=Cln+(-n

T +g90) €S <X +3(n)

w w
Zalids ZFE) =S Lo cae T eR())

[Tatrdx= [ ecada

T+6(n) £ S & T+FU) when F is positive & weakly decreasing.



L2/25/25]-1ecture & - Sums (cont.) & ASYMPTOTES

u‘_'rl
——-, ‘e 4 G4 o
Yo " blocks =» overhang= T+t ¢ 4. tom
[ L 1
= _( S )= —Hpne—nih Harmonic number
~N 20 i 2
T L (suwm of reciprocals)
Hw = ise b
. L n
SOMS' Iv\:‘[ ;“-dx = [lnX]' zlnwn
Wwow Far you Tn+tfnN) € Ha € T+ F0 /I
o oo ' " wt £0) NTEGRAL Bourno . 2007 paper
n blocks —> lnn+ = < H, £ lnwn + 1 - ‘overhang’
© mike petérson

. Fn)
(frowm l1eC. §): £ ~gq meansS  wnyoo g(n)

=1 & f(n) is asymptotically equivalent to gn) " blockS > 3fn overtang

ecisely when Lo £n)
prec Y W nn-yoog(—,%" &: N=R"

Tum: Hao A~ L w
v ¢ overhang 210
LW EVARPYY ) . YR Vi
PrRooOF: ,,\_.,oo"" nIAn = e Lnwn ‘“l:.o"" A v > Hn 220
“fn 220

p & bottom w2 et

W~ Hn b +o
naws Jou =1 | (saveeze theorem) « squeezed by 1 on

ProoucTs:
n=12:2.3-...(n=1)-n how +o approximate for producks?
T integrals are fon Sums.
Mmnl 2 nd+n2t... Fenn-)+nn Swrite product 25 Sums!
()
S= Z&ni

I- flmxo\x = [x!,nx -x-_l:“ = wnlnn-n+d

T+t ese D+em) 7
(N2An-n+1)+0 £S € (M4)nn - n+21 e nluv -+l +Lan

(ev\lv\v\-h-l-l) <es< e(nﬁ)tnn-vﬂ-l

mwn\" -n ' - "
(em") - e"e'cess n*.e".e e = n
v\'\
n" s nn+l
eﬂ_l < le| < en-l
wn!

n
n
Tam [sTieene]  n! ~J2rn (?)

P B, wni '
Tum [vrate] € S Jzme (B) £ e 2=
@ only care 3about 13rge terms
ASYMPTOTICS: Simple sort/SwapSort: mevge sort: cignore small n / focus on large n
nen-i, n-2, ... 1 )& so on M(n) & nlogn -N+ i . ignore lower.order terms
n-l, n-2,n-3,...,4,n _ s ignove constant £actors
#swaps £ (m-1)+(n-2)+..-+1 ?;:‘:esp /
_wvln-1) _ n3r s+ 2
Styenloz) | mtod e o 6T imstroctions
7
grows = 420 "‘—: clock cycles incr  § cycles
faster \ Cmpe IS cycles
420 “Y. 2¢
-» 20 __[l2 riw 100 cycles
Sx107
Bic-0 NovaTiOonN:
NOTATION: ¢ TR eats”
« £(n) € O(g(n)) " £ln) £9(n) with cav £(n {gtn)
Der: £(n) € O(3Lm) means Ano Vnzne F(n) £ caln). &Fine as long a5
constant apant NEVER WRITE THIS!
al.
Ex: NEODMZ)? YES 5 v is a+ most n? for > 1L ner eav

ne n*
Ex: w2@0(n)? enegation of statement

VcVne 32 n2visc nt>cn



Ex: Sw €& O(2n) & constants downt mattenrt

) g(wn)
c= -g— Sn £ é-Zn
THm: f.9: IN » R*
. . e(n) . -
works for
. . e(n) Some problems
i "\(:’v‘,° Y exists, <o B(n)E 0(3n))
i L EM) yoesnt exist, incownclosive
w0 g (w)
gv\ . w Odd
Ex: F(nV = 7, «n even
F(n) € O()? (ny=n
. S 9
. (“
:’:w ﬁ DOES NOT EXIST! does not converge +o 2 single # (keeps switching)
£(w) € O(am) v
£(n) &€ ITn V & For 201 W, €(w) less +than 7w
*+v~5 to use Hwm, if doeswnt work, £ind another way,
LX) no o ;f_:; 21 & asymptorally equivaleat
£€0¢(9) Fe>0 Ine20 Ynzne Fln)Lcgln)
fesi(a) 9 € O(E)  g(n) “ar least” Fln)
fe o (9) c€0(a) and g€O(f) & £ & g grow 2bout S2me, up +o constant factors
Feoés) “_';":a g‘c—:)) =0 & f grows much Slower than g
FE wio) 9€o(f) «
MIDTERM: (ectures up +o +oday, warm uPS, PSEFS,
-like psers boutr sworter
-« Ao mins
(21271257 - 1ecture - ASYmpToTIcS & RECURRENCES -cheat :‘hﬂeu. Isided
ASYMPTOTIC NOTATION: MEANING $
N fuwg ul::—.‘ %:| ‘frg up to lower ordlev +erms 3
2. Feolg) 2¢>0. 3N020 Ynzne Flmyc o[ F €3 vp o lower order 2 constant £actors £=8l9)
. 72N
. fen( €oCF) €z9.-.
3 €S (9) 9 . £=0(0) #=12(s)
y. FEO(9) £EO(g) and FES2(9) vTerg... 4".
5. €€o(a) ..'32-{,%’,=° Y g .- fzolg) f=wla)
6. FE w9 geol(e) f>2g..
£

fug O L 9tm ©

£=0l9) & 3¢c>0. IVo20, YN 2Vo, £n) s c-9()

impiies £:0L09), but NOT other way avround

fug
@ﬂ\/\ow 'S this CA'FF7
HMm: 2"€0(2 )
- (x) proved thatin 2" e O(") «for everym, 2" s 3 consiant

ProoF: Base: wnzd: 2'z2 = ola) v

n
Vw Jc... 2" < ¢

1NOLLTION: suppose for N=2"€0(1) . bot we wanted to prove:

W. ¢ prove i+ for n+) Jcvn 2V 4C
PAGUFFAT MY N SORYJOEXTOP




RECURRENCE: sequence of numbers defined induckively

\,2,3,4... Ti=Tio, +1
.v,2,3,5... Fi=F Fioi +F; _’Fn_lFs_{{%L—)v\- #)h)

EX. TowERs OF Hamol [1.2.3,4) r[2.3,ulag, dac, [2-3.49)ac

// | move

lac, 28¢  //3 moves

['Tac= 2ac
["szC = 2a8 )

(112,30 ac=[2,3Ta8, Lac. [2:3Tac /7 moves

ALGORITHM (recursive): T)=\ T(n)z2T(n-1)+1
Lr.2,..-nJac: T(2)=3 describes runtime of
-(2,3.4,...,n-1]ag T(3):7 fower of hano:
T lac T(4):IS  T(M)=2"-1  ‘guess & check”
- [2.3,4,.. =176 T(s) =31

EX: SoRTING

GIVEN NUMRBERS: S(n)z (=) +(n-2)+-.. +1

SELECTION a P

SoRT: -Find Sm2lles (n-n n2 " 2
- pull it out T2 T2 2 € &(n*)
- repeat

input 1iSt with N numbers

-i€ wn=l - olone
-Sort tne first [£] elements using merge sort

-sort +he next [2] elements using merge sort

MERGE PrOCEDURE! MERGE SORT:

have sorted lists A& B

want: combine into Single Sonted I'st
‘Compare smaliest elements in each I'sé - merge
- pull out smalter of +he +wo

- Continue until 2 List becomes empty

c Pput the non-emply list @ +he end.

ginduction for
2dlgorithms

T =n-
Meme’se n-1 'S £(n)
wWorst-case Hcomparisons in merge sort wl v elements // say wn=2
" "
mim = m(2) +m(E) + (a-1) e = 2ofg)a
b2sé = 3 -1
Casej“Muh;M(z)”n ) 12+ U+ 2T o2k m/<|$\
n n v
b br b3 £(2,)a2
b? o
M(“\-‘ZM(%)"'('\") CASE 1: fF(n) bot++ heav (bz)
_ " " " : Small=> bottom Y- .
‘Z(ZM(?)“(TH)) +(n-1) rum(F)em22 4 (0-0) cost€B(a%) h=log, n F(E)an
3 b"
= (n-t) +(n-2)+ (n-a)t ... + (n-2K"") + 2%m(2) z6(n'3e%)
zKn-(+2+4+...+¢2%7")
S k-2 ne2 ln |1 |z2]uls|el
Twleg,n-n+l K=log,n sel. o |6 |28]120
merge | o [ - I I B 1Y

© (nlogn)

MASTER THMm:

Masker Theovern

E)_L a2l

Lt T() =T (B <500 |

Cssed : |f £ln)=O (' 957) ero

I 1((“‘Y\ )

(ooea :

€25
=

f g(n):!l(nw’ )& a&KU

write +hm in Crib sheet &

Q/
rememper how ¥hw came o be

rm m /()
@( g\, \aj Y\)

<c§(r\) n:;@ UC@)‘

(¢<1)



MASTER THEOREM: fiqures out asymptotics for recurrence
T(n) = aT(%) + £(n) ¢recursively does 2 Fonction on +erms

-can plug
(%) = aT(E:) +¢ (%)
arT (L) +af(F) +é0)

i what we know 2lready (plug & chog method)

"‘"T(ﬁ)(-.... & keep recuvrsing until
LK becomes n & T() base case

£n) iS mef.

/ |w:ldrev\
£(2) f(R) F(R)
AR RN AR R

F(:j‘) ©e depthz=layers of tree

[3/4/247) - lecture - Diisigiiry &8 GCO

NUMBER THEORY: study of integers = i...,-z,-bo,;.z,... g

owsigItiTy: alb ‘o divides b

Toniy includes mulkplicakon

OEF: alb iFF there's am inkeger KEZ s.t.bzka )5 -1

.wnis even: 2In
‘nl0 for 21l WEZ
‘nl-wn

Proe 1: dla = dlca for a1 CEXL
PROP 2: oln, dib = dlath, dla-b

PE: o:k-d for some KEZ, b:ok'-d => a+b=(k+k)d=2 dlatb

Pace 3: dla, dib = d|(sa+tb) Vs, L€Z

vse, 4 |sa+tb O

PE: use prop 1: dlsa , dlitb props’

INTEGER LINEAR COMBO (ILc) of o & b:

S-921 2-92!

Sa+tb for some s, tEZ

(6.0) = (s,0) » (2.3)2(2.0)» (0, 2) 2 (5,2) > (4.3)

want

X$a (wlog 6 2Zb. a-92\, b-3at — c-q21)

STATE MAcmNE:/{ss b

.state (x.4) means x 92! in 3-jug, 4 92l in b-ju9

. final (desired) siate: (c.0)

. j;rgng-"l--'o.ns'.
'(x.g)i"" (a.y), (x/b)

ewmphy
= (0. 4), (0.4)

: (":5)'&':2(0, x+9) if x+y<b
(x+4-b, b) oOtnerwise x+y>b

paurz-ol
(x,4) — (x+9,0) i x+ysa
(o, x+y-a) otherw:se

azq, bz, €=4 ?
LEMMA: 31l reachable 3mounts are an TILC of o & b

PF: by induction
BASE CASE: (0, 0)

IND. STEP: x,y ave ILC of 0&b =) x+9 iS 2an ILC of adb
A\
x=Sa+tb, 4=sa+t'b D x+y= (S+S')at+1+)b
B x+y-b is ILL of & B b
D Xty -o
ocS, b=3, c=4:

4=z2.5+(-2)-3
LEMMA: can obtrain value ¢ in water jug problem iffc iS ILC of a8 b

2and 0O¢c ¢ max(ob)



CLAIM: c is ILC of a 8 b iff gcd(a.b) | C.

DEF: greatest common divisor gcd(a.b) is largest integer d  s.k. dla . alb

Ex- 9cd (2.6)73, gcd(s.3)=1, 9cd(s,0)= 6, —>gcd(a,0) = lal for 211 aEZ
gcd(-s.0)=§
Bic IbEA GCO SUBTRACTION LEmmA: gcd (a. b) = gcd (a-b, b)

. SUBTRACTION | LEMmA: gcd (a,b) = gcd(b.a)

9cd(s,3) = 9cd (2.3)= qcd(3,2)=9¢cd (1. 2) zgcd(2,1) 2=, qcd (0.1) =1

PE (of gcd subtraction lemma):
So,b = S€t of 21 common div. of a8 b
a-b&8 b
s“.blbg . .
we will Show Se.b= Soa-b.b = Sa.b & Sa-6,b £

SG,b 2 S“-b,b

tC” if g€ Sa,b P gla, 9lb B gla-b

2> 9€Sa .y
t2 ex: DED O

acd (100, 1) = gcd (a9, 1) = gcd (ag.1) = ... = gcd(0, 1) =1
division faster LmaO

DIVISION: YneZ, VAeZ? (d>0) there is 2 unique pair (9,r) S.E.
1) nzqd+v Gg=nadivd
2) ogvrcad rznremd
GCD DIVISION LEMMA: if azbzl, gcd(s, b): gcdlarem b, b)
PE: acqb+r
scd(q,g):ﬁ(d(a-b. b)
=qcd(a-qb, b)
zqcd (a remb, b) QA

EUCLLID’S ALGORITHM to compute ged(a.b): INVARIANT: V(X 4) that 2ppears in Eovciid, gcd(x.y)z gcd (a.b)

.start @ (a,b)
- States (x,49), x2420
- transition (x,49)> (Y, x rem 4)

PARTIAL CORRECTNESS:

(x,0)-» retven x

better derive

[3/1]25]- |ecture - MODULAR ARITHMETIC
I. EvEn + Opo = Ooo  (wmod 2)

2. 999 x Q98 - has last digit 2 (mod 10)

3. currenty 2:39. in IS nr, it's S:39 (modl 24)

4. today is tuesday. 100 days frow now... thursday (meodl 7)
S. x= 20252°%Y (2023 + 2022 x 2021) -whwat IS rem 77

THEME: ignore multiples of n (here, 7). Focus on the remainder
DEF: O Zbn iff nl(a-b)

(o S congruent +o b mod w)
Ex: 1?F g 127 v
* 5S¢ 307 X

3 .=..‘ -3 vV 171-(-3) =20 = mul+iple of 3!

fol = $o0, ts, ti0,- 3
[ B E...,-q,.q,“‘,...g
(2] ...

[3] = e

GIVEN 3 number o, which conqrvence cilass does a belong +o?

0€[a rem ST (or) azS-q+tr 2 aelr)

when terminates, outeuts ged (a.b)

TERMINATION: derived variable < x+y
(xrem y)+y < x+y <&decr 8 ends 20

d variable: bits(x) + bits(y) etracks oigits



THM [division +wm from l2st cl2ss]: for every (n.d) € 2% A»0. jnece is 2 unique pai~ (A, r) Such +aat:
DICEL YR XS q=nd-'vo|

Ex:
2) o¢rcd rzn réemot

*

sl-

n
IS

\S, d=
2

T-‘?i-
-6

-2

"
w

THM: A =S.b iff a remnz b vem n
PF: Sif' o rewm nZ=brem u, then OLEnb (WANT To PROVE)

azqg.-vuer b= q'-nér

a-b= (a-9)nn = nlla-b) =P rZ, b

‘if" o Zn b, then o rem n = bremn (WANT 10 PRovE)

wifa-b) > a-bz9q"n
QA qn+r
b=a-9g'nz (q-q)nt+vr D oarem n s bréem wn = r

bzoa mod n = bzavemn 5 bE.Q

#can only 3dd, Subtrack, mulkiply in mod. NOT d:vide.
THM: aZ,.b and any integer c.
2d- 0+C = btcC
Svbtract: a-C =\ b-C
moultiply: oC =. be
exponentiate: o€ =, b¢ (Wl base)
THM: ¢ oos. b, A=, b gon any + integer C.
PF: by strong induction on C
RASE CASE: (c=1): by assumphon,
TH: a¢' Zn b wrs. af=.b¢
at:-o-a¢
mC" Zn b(-"
12
A-OC'= on-bE! =, b¢

az.bDoa-bt'=. b bt =, b"

WHAT DOESN'T WORK: if Q=.b, C*=,C*
PF by counterexameple: (smal)

02, b27, 222 23557 2%*=c2%2 H=g 128 NO!

SOLVE: x: 20252°%" (2023 + 2022 x 2021) -wwat IS rem 7 - which Congruence ciass does x belong +o ?

202S rem 1= 2

002y
=2 (2023 + 2022 x 2021)

2023 rem 7: O, 2022 rem 1= b, 202! réem 7:=s§

2024
- zzezu ° (2)rem?= Zzourem 2

(04685) s 2
[ —
remz=2

2's2, 2%=,u, 2%3=,1, 2

3k

2 » 1 for any integer K.

202 7S %3
2%°% o7 =273 =, 2



Division:

Ex: 3x=3 —» x=1I

Ex: 3x =¢3 a-2x Sg a3 xSgoa-3 =g 4y @
2x =53 want a S.&. a-25¢g

PULVERIZER THM: for 2ny integers a & b, +there 2ve integer I-C-(S,t) s.t. as+bt =acd la,b).
RECAP: gcd(42,24)

Ha 24 (10) (o0,1) 42:1-42+0-24
24 '8 0.1y (1.-1)

'8 3 (1.-1) (=1,2)

e o (-1,2)

THM: o has 2 moltiplicative imverse modl n iff gcd(a,n) = 1.
DEF: multiplicatve inverse of o mod n IS 3 number DLbin st Aa.bE.1

PF: o hasS moultplicative inverse mod w F€ there s int b st. abs, 1
i€ wnl(ab-1)
iff 4here is awn integer q st. ab-l=gn

iff L=a-b-n-q

THM: i€ n S prime & a#n0, then &' mod n exists *REVIEW wARM -LP A (hard)

[3131267-CRYPTOGRAPHY - science of secvet wWriting:; ewvcoodling/decoding
-3chieving paradoxical notrons
‘how 0 Comwmunicate securely w/ Someone youv never metr befove?
-ex: website 8 user- 2 parties who havent met, but St meed +o send info
- 9o through public SE€rversS - poiewntidily ppl eavesdropping

‘how to prove 2 +heovew wlo reveaing the proof ?
‘wow ¥o Compuie 2 fFunction wlio revealing inputs?
. made pessible w/ modular ar’themetic

ELULA ———————— ) TERRY

eavésdropper
eve

HISTORY:
“CAESAR CIPHER (A=0, 8=1, e+c.) - engl'sh letiers mod 26

-key k=random # in O,...,28
-Shifts each l1et+ter by k, send ciphertext

EX"
clpheriext: VW
plainrext : HI

€A SVHW __, yeeay keys 14?

eavesdropper
eve
-VERNAM CwPHER (ONE-TimE PAD) - key (k.,-'., kw): n vandom #'s mod 26
-SWFt by ki for £; letier +to encrypt
- perfectly secure blc eve dolsnt know key & words can be anything . rrecs
- however, cannot S€nd moul+iple msas, or eise eve will know +he d:ererence Shif+ b/t the [+t
Ex: PSET (k. k2, k3, ky)=(1,5,9,12)

- ENMIGMA (GERMANS)

WHAT IF ELLA & TerRry HAVE NEVER MET?

3nyone can encode +o beb
Goau: goms beb c3n decode
IDEA:
‘bob generates 3 key-pair: 3 public key & privare key.
- 3nyone C3awn encrypt +o bob wl public key
-onty bob can decryp+ v/ private key
»easy: O(n?)
“* hard = O(lo")



FERMAT'S LITTLE Tum: statement ab. when number will hik 4,

moad 7: 3° 32 33 34 35 36 3? 3’
3 2 [ 4 s [} 3 2
mod 7 2' 2* 23 24
2 " ' 2
for 2ny prime number p 8 o relatively prime +o p, of”! S
ee: s=3u 2:---P"3 S= iaq,q.z,...’a-{p-l)g
CLAMm: for every iEpl), Qi Fpaj, aF,0 ! -1
. . z a2
SsAME AS: f .1 Sp0-j, then i =Sp) 3 -3
(contvrapositive) AR ¢» BHA Y .
a .
oala-i Sp oD iSej : _ A2 =, 9.4
. /7 ) \.
P-1 ale-1) a i J

1:2:3....-(pP-1) Zp (a-1)(a:2) ... (a-(p-1))
Ep P (1.2-... - (p-1))

I S //

“P-12& Q-1 Wil both be even blc PBQ relatively prme & 2 dAgits (2 cannot be e)

RSA EnNcRYPTION:
acd(e, (P-1)(a-1))

PRIVATE KEY: (P, Q,d)

pueLic kEY: (n=rpa,e) d-& = 1y e-ny 1
EX: Terrg (N= 667, e=g)

ENCRYPTION OF A MESSAGE m (O SwmcN)

Ena —22 Serry 32 : nSremc67

c=mevremN
(c)
Jerry: (32) rembb™?

DECRYPTION OF CiPHERTEXT C*

CAmool n

WHY DOES THIS WORK ? (p-|)(q-,)' (e-d-1) m=2 25=32 e.dz=6lIs -1 = 61d
d = A _  1+k(p-1)
c? =, (me) = m p-1) (e-d-1) P=23, q:=29 Easy Problems, Hard Problems
= m.m5F" a-1 | (e.d-1) (p-1)(a-1) = 22-28 :
e eod-t = k(p-t) Breaking RSA
d=123 =3.4]

1 3

Computing e roots

cd=gm '

HiSTORY (cont): Computing (P — 1)(@ — 1) given N = PQ
-.merkie (1a74) - paper wad core ideas t

-d:ffie 8 heilman (1a76) - Public key cryptography

CJE_P (Me)dEP Mu+|<lq-:) T4 ™

rivest, swamiv. adieman (1998 ) Factoring: Computing P and Q given N = PQ
L , i,
. goldwasser & mical’ (1982) - probabilstic @ncryplion

-RSA claimed +o be invented n Secret in @arly 1970s @ GCHO

LECTURE 11- GRAPHS & CoioriNnG

PLE UNOIRECTED GRAPH: 3 pair (V,E) where V iS a nonempiy set (elements caned ‘nodes” or ‘verticest) and
*2 elements mous+ share smt hg E s 2 set of size 2 Subsets of v.
v:ifo.,b.c.d. e.f 93

3 iet‘3=2c.ei=ce=c-e

E=Fsa. b3. Fa,c3 b3,
i(;d g' idf‘%' 63,33.
36933

#self loopS NOT alowed

& /GT) @ #*doplicatre edges NOT allowed
© © O #empty V=§3 NOT allowed (no vertices= no vard graph)

deg . (b)=2
dege () =4



vz §a,b,c,d.e, £. 93

E=%3
d
LY b < deg (c) = O
Fo N |
‘e
EXAMPLES of Simple graph: NOT simpl raphs (directed):
‘Criendswip (2 ppl - friendls) ‘links on webs:+e (doesn+ guarentee other link links back)

“conflict qraph (2 C13S5€S - conflict) - followers = directed, NOT +Ha's (they follow Yoo, but do you follow tuem?)

- brain (neurons /neural network)
- inkternet (vovters +alking)

DeF: 2 nodes A 88 are adjacent if tuey're connected by an edge ., i.e. £o,b3eE
the edge fa.b3 s incident +o a & b
a & b= endpoints of ia.bg

OEF: o\esbtv) = # edges incidlent +o v

DEGREE SEQUENCE: 31 node degrees in & Iisted

ex: (2.,2,u4, 3,3 2,2)

Q:does there exist 2 graph w!/ degree seq (2.2.1)
‘3 vertices, two with 2 deqs, owne w/ 3 oleg

4 No X HANDSHAKE:

Q: what 2vooutr (2,2,2,2,2, )2 4 3 edges cownnect 2 vert
degree +ota)
So =edges=7

—1,
w z

2 2
HANDSHAKE LEMMA: for 2 graph 6= (VE), vgvdegtvh 2|el

Oef: G=(v,€) is bipartte iff V can be partitioned into L 8 R s.t. every €dge in & has one endpoint in L,
one in R.

EX: Ave. B of Harvard friends for MIT ondergrad vs. vice versa

MIT: H: H M

H= set of Harvard ugrads 2 a:n Boz

M= MmT I Helen7ikenj:
s Nat 4 L/Sa
(o] Ne:d|

=|€e)= de
h%u des(h) = 1€ Eem alm)
mfmdes(ﬂ\) T 3“ deg(n) _ et

Ap = I\ Imi 14 = IHI

A (1]

s T e ARecviEw

burtd of
ot
EX: wen & women rvelatrionships: 1Mt < 1.03, 3.3, .74, 1.7S

ExX: goak Scnedute exams  edae £u,v3 means classes U & v wave
©.370 G.200 student in Common (conéict)

graph L
® 6.410

G.120 &.300

A(Hr=3



GRAPH ColoRrinG PRoBLEM: given G & K tolors, want +o 2SSign 2 color to e2ch node s.t. every edge has
2 distinct colors @ i+s endpoint.

Def: 2 proper k-coloring of 6 s a function £: V3C where JCISK s.kt. For 211 edges EU:VSGE, £lo) % £v)

DEF: Chromatic Number of & S sgwmallest § of k sik. 6 has a eproper k-coloring , dencted by Chi X(6)

SNEED +o prove X rnorks & <X does NOT work

Ex: RAOIO

.conflict grarh
9 - 2 fowers c2n+ be on same frequency or elsé garbles

Ivil
PossiaLe Cororines = (# colors)

SNP complere problem

c3
GREEDY ALGoRITHM: (to color graph)
[ ]
-order nodes (Vi,.-, Vw) v,
- order colors (€., C2,€3...) A\
- for €23ch Vi in ovder. choose lowesSt color that odloesnt introduce conéirets C
-greedily choose earuest color that works .
J

THEOREM: if every Vi has deg(vi) € K, then greedy 2i90. uses £ K+l colors.

2 try inducting on # wnodes

P(n):= For every graph G with n nodes S.&. all vertices have oeg €k, alg. uses £ k+l colovs.

BASE CASE, P(1): gqraph has no edges; alge gives it 1 color. VvV o &t

INSO. STEP: assome@ P(n), WTS Pln+1):
assume 3all n-ver+ex, max degvree k gqvraehs vuse £ k+l colorns,

WTS 31l (n+1)—vertex, max degree k graphs vse < k¢l colors,

suppos€ G iS an (n+)-veriex graph where 30 nodés have degsk
WTS 2lg on G uses <k+l colors

v Va+
6= (v,€) D@
L EV-: A LYY g

V2
define &' 2s subgraph of G

6z (8o, Va3 A Ao T2 v §)

all nodes in 6' have deg £k

So by P(n), qreedy 2190 on &' vse 3% most k+l colors.
Note +hat 3lg. on &G does same Ffirst n steps as 3lg own G'.
So Eirst n Steps ©wse £ k+| Colors

Vast has ¢ k neighbors, so @ most k colors forbidden +o Vs
Greedy 3lgo. will use one of ¢€i,C2,..., Cs1 Ffor Va+ O



[ 3120125] - mATcHING 8 STABLE MATCHING

DEF: 3 wmatching in 2 graph G(V,E) is 2 suvbgraph in which @2ch node has degree 2.
i.e. & Subset of edses in 6 that Wave wno endpo'nts in common,

A 8 c
NN
F/ \C,/ \l-l

2 maicking M iS maximal if B M sk mEm
. local max (can‘t choose more

> M is maximom f F M’ st Iml<|m]
-max # eodges possible
-A-D, B-G6. C-E

A 8 c
N . /I\ .7 - B8Loe matehing is maximal & maximuom-3
o €
F/ \| ~ \ > if 3 matching w/ 4 edges, would need to use 211 nodes
& H 9 there isn't 4 edge (A 8 F can't both have D)

bipartite matching - Einding max wakhes n a gqvaeh

-planes & Ferminals
. servers & tasks (€2ch can only deo some +asks)

. dating websites (binary hetero.)

perfect matching: Size Ivl 2 (use 21 paies)
‘- beth sides must have equal vesrtces

- X frx 1Y

OEF: weighted graph is 2 graph 6:(V,E) together with function w: E-R

MIN I MAX  weighted matching problem:

-find 2 perfect maitching M w/ minimax 4otal weight, eZSMw(e)

A 3
c A2 _c A ¢

(4
v @ S¢o-» better!

e o 8 2o 2}

» beute €orce for +th's S not possible

3 uniike color theory, thes has an efFicient 2lgo!

MAX MATCHING: Find 2 maximum matching
‘winimax weight Ped-‘ec(- Pa+hs
. have efficiewn+ 3algos! can ge+ perfect

STABLE MATCHING PRoBLEM:
diagovals: % i applicant a 8 evalvator e is v+ possible to make

.
A'><H' A -Ha botw prefer each other over matching Stabie?
Y___SH, Az - H, their assigned pariners in
2 2 some pevfect matching M,

then (o, e) s rogue PAIr. &

M is cailed onstable.

Az

if botn don't
w3ant each other
(tnere is a3 “berrer” maich)



Ex: wvw applicanits, n evalvatoers
each applicant specifies Foll ranking of 2l v evaludtors, vice versa.

GOAL: f;nd perfect matching +had s stable

s> does a sStable matching exist? how can we find one? how fair s 4?2

what f grapw rsvi't bipactite? just epl

r2ating €2ch other
I no stable Mmaiching exisS+s. (Ssmmel'r-'c)

1, A2 2imagine. O prefers & matches wl A.
/ P\

g c (0. A), (8.¢)
N A4

(o}

Ino stable maiching wno matier what.
P for B/PARTITE: Stable matching 2lways Exists
aka ‘deferred acceptance’’
GALE-SHAPLEY AcG: (Stable matchng 219)
EAcH DAY:
- MORNING: 2PPI'cant 2pplres +to favorite evaivatrer that wasn+ cejected them

- EVENING: evalvators rejects 331l exceptr current Ffavor'te applicant (tentaiive),
- if notnhing changes (ne rejéctons), stop.

4 2pprcant starts w/ Ffav &
goes dowwn

eval starts w/ worse &

goes ovp!

EX"

EVALUATORS: APPLICANTS:

Alh D By G T

B T>F>6>I‘>H ProvVE:

C I> HPaT 2 Gz H ‘2lge Fin'shes

3 T T [ - 2lgo stable

DIG>F>H>1IT> | 5

E F TR j - A - algo provides perfect matchings

| \—H\IBG\) ! e

DAY 1t 2 3 Y
A 6.I,3 Ry 3
8 none G G.F E
C 13 F,I I I

o H L, ] H (%]
E nowne nown e none [

clzim 6S 2lgo  finisheS quickly & retrorns perfect maiching +hat s Stable.

e check Stable: go thvough pairs & make Sure ihey 2arént rogué pairs

THM: G-S. terminates by day n?+)
PF: consider # of uncrossed oot prefs ,n app. preferences

s is strickiy dece. derived var. wl valves in IN
starts @ w2
@ most n2 steps possibIe

LEMMA: YaeA , L Ve€cE, if e has rejected o ever, +hen € W3S 2an applicant tney ke beirer than a.
-each evaluators cuerices get better over +'me,

.

PE: e owniy ever trades ve.

THM: &S ewvds vp w! perfect maiching.

PE: if nob. Some apelicank a rejected by 2all n evalvators

€very evaluator thus has some 2pplcant Jhey ke betfrer +han



n evals, n-l applrcavnts other than a. contradichon!

CLAIM: the G.S. perfect matcwing is stable

PF: by way of contradiction, BWOC, aSSume M is nob Siable, so it has 3 vogve e2in (a.e)

3a.e3€ M, so consider: did e ever reject a. or diod they nevenr meet?

CASE 2: e rejected a
then e s matched with someone beirer +than a.
so e doesnt waw to run 3away w! a.
So (a,e) S not vogué

LASE2: f a & e never wet
HHhen o has +weir Fav. eval +hat hasn'+ rejected them.
Se a is happier with #nheir curvent maich than w/ e.

DEF: o 8 b are feasible pariners f 3 2 s+able wl (a.e).

OEF: participant ©'s optimal match iS *+heir most preferved Feasible partner.

DeEf: pParticipant e's pessimal maich is +heir 1€ast possible feasible partner,
-vniot necessarily last

THM: 6.S. matching gives Every aeplicant their optimal maich.
and fin2Wly, gives each evaluator +heir pESSiMml mIich

Cunias)-lec
ReCALL: Simple uwdivected graph 6= (V,E) ¢ ¢ EEU.vil U,VEV + U#v3 sowly ledge bit+ Fo.v3 & wno ‘self-loops’” Fuu}

WALKS “w2lk” from Vo o Vic is Sequence of veriices

(Vo. v, ..., V&) s.t. §v;, Vie13 ¢E

length is k (# edges) *k can be O (2llow walks of 0)
Ex:
vZ \d abdebd celength=6
> NOT 3 pa+h +ho

def: PATH iS 3 w3alk with no repeated vewtices. o, b “connected” iF I walk from o o L
-3y not be most eFfF. cient, but vnot repeating

: X2 ted +
Ex: RoAaDS v&;g::v;&;e(e o

¢ SF 8—6B0os

2ustrailid v.s.

GRAPH PROPERTIES:
*REFLEXIVE: A is conwnected +o r+self
« SYMMETRIC: A covmected +o 8 if¢ B cownected +o A

* TRANSITIVE: A connected +o B8 8 B conmected +o0 £ implces A cownected +o C

‘e degrees of seperation”: 2N pairs of ppl are cownected by @ most & hops

some walk b/t thew

CONNECTED ComPONENT of V: subgqraph induced V= 3ueV|u, v connecred3
-if 211 of G is conwnecteod. only 1 connected = G .
‘Mo node can be i 2 connecteo components €: S(uwv)eElu,vev's
Ex: RoADS (+en you need

Va o SF —e6B0os te connect totar)
Sydney _:: v.s
NoT 2usterails -S.
2djacent,

but IS connected. 2 connected componeunts
A'sfact



THM: if there is 2 walk from a +o b, there is a path from o +o b,

take swortest walk from a +o b,
O6z=Ve,V,, ..., Vk = b

must be 2 path.

assume nok a path (BY conTRADIC)
then 3 veviex +hat appears twice At
Vi = vy, i¢j(note j-4120)

+2king the bive parts 23wa4qy,
Vo, Vi, ... Vi,V eee, V§ R 4 .

G=Vo, Vi, Vi, Via, -, vie Vi1, K path (S Shovter

0N viat vi . .
> ...0 _."o’f,o > 0..-20 Contradic +sS “Shovtest walk
azve VizV5 Vi Ve

River Pregel (roughly 1700 AD) in Konigsberg Germany
. ot . T VLT VI 5

ia;ik ¢ 3

BRIDGES OF KomiGSBERG:

go2l +o walk & tvossS each bridge once B get back +o Start
def: walk is ‘closed” f begins & ewds @ same vertex

def: cycle iS closed walk

) lengHh 2 3 O X
2) no repeated vertices “—n X

Goal:
walk that crosses each bridge
once and returns to start

def. 2 closed walk s a ‘Euvlerian +our” {f 4 uses every edge exactly once e
& visits every verbex ™

qu
c
det. graph s Evlerian F has Evier’an +our

> every vertex must have even desme

. S Ex: poStman
2 Y

3

ifF
THM: 6 is connected & & has Eouler tou~ & 21 degrees evea

PF: Euvier toor W
PROVE connected & Euler Jour — degrees evea
led vev. every fme W enters V,

leaves V on newt step
Hdepartures = # arcivals
each odeeartore/3r val s ow Jdishiact edge,

b:.l visSts all EJSES -> degree of v= N-deplv) + H‘Zrt‘(‘l) = 2.8 dePCV)

prove other oirection &~

TREES:
“connected /(}\ Ex: phone t+rees
YR no CgC(eS) soris
Bcyie ( . binary "3
-any tree wl w vert'ces ancestry

has wn-1 edges Ciaduchon)

LeAar = avny vertex w th degree =|
-deleting 102Ff From tree— s st 2 ‘ree

*®
leaves +ree ! 100 vertces

Mmoust have (@ jeast 2 1eaves

LEAF LEMMA: every +ree with W22 vecdices has 22
PF: take longest P3th Ve.V,, ..., Vk

C least 4 edge (kzl), se Vk =1v,
CLAmM: Vo +Vo leaves

PE By ConTRA: 1f wnet, Vo (onnects to Some w odher Huan v,

if we€ $v,, ... ,Ve3 then cyce (contrad.)

£ NOT, thewn W Vo, V., ... Vg iS tonger (contra.)



[u4i13/25]- DicrAPHS & DAGS

TREES: conwnecred, Bcyl'e (no cyles) graph

*Sl-ar 4’}\

binary
LEAF: vertex of des:l
.LEAF LEMMA: every +ree w/ w22 vertces has 2+ least+ 2 leaves

TREE PR : 3
vnING: for any 1€2F £ n tree T, T-R is also 2 +ree

T

TREE SI2E: +ree wl n veri'ceS has n-I edges
-PF by induction:
BASE CASE. n=2 » 1 edge

INO. STEP: 2Ssume 4rul for 22
-given +ree T w/ n+l veriices:

‘by le2Ff 1emma, T has 1eaf ¢
* by pruning, T- £ is 3lso #€e on wn vodes %
- by -'n-d. hypo, "L has n-, edges @
-aelelung back 1eaf 2 & its adjacent edge gives T w/ n edges e

Graphs

DI1RECTED GRAPHS:
) oo L R R
EX: one W33 vs. 2 wa:‘ V'an‘s } -G=(V,E)isadirectedgraph (digraph)

R e

- G = (V,E)isasimple undirected graph

. ( . with with

ins+a (Following) vS. Faceboek (Friends) |+ verticesV and « vertices V and
| =edgesES { (u,v}|lu,v €V and u # v} - edgesE € { (u,v)|u,v EV}

| » (u,v) is edge fromu to v

®— @
f‘ ~ 4 @ + Simple: only one edge between {u, v}

J and no “self-loops” {u, u} « Can have (u,v), (v, u) &
,v), (v, u) and “self-loops”
@O-0-6 e ) p
¥ ok: m‘. or \;,
ww—'v

W

vz a.b, ¢, d, 0.€3

E=E(a,b), (b,a), (a,c), (c,b), (b.d), (d,d), [k, e), (c,e)§

INDEGREE (v) =1 3vev] (v, v)€EES N Degree analog:

|

OutoeGREE (v) = | gwev [ Lv. W)EE 20>
i € g 50-1’?5 oor-deal ) - degree(v) = |[{u€V |[{u,v} € E}| « Indegree(w) = [(u€V |, v) € E}|
HA . ) gtv - Qutdegree() = |[{w € V |(v,w) € E}|
N DOSHAKE Lemma (d:rected):
Z indeq(v) = Z outde = * Handshaking Lemma: < Handshaking Lemma:
vev 9 vev otdeg(v) = IEI Z deg(v) = 2|E| Z indeg(v) = Z e @) E|
vev = = ‘
L |
o
Legal = —
directed w7 ! 4 - S \
W & &
Wa lks cycles: 18 n dc(?[v\ ov eJ (v

I{RECTED" :
« Walk from v to Vg IS sequence
of vertices v = V1 =~ 2 V&

SIMPLE (undirected ):
- Walk from v, to vy is sequence

of vertices vp = V1 = = 2 Vk
. Each {v;, vi+1} EE « Each (v;,vi+1) EE =
« Length =k (count edges, not « Length =k (count edges, not
vertices)

vertices)

« Path is walk with no repeated
vertex (or edge)

[ Closed if vgp = Vg

[+ Cycle= closed walk of length >2

| with no other repeated vertex or

edge

« Path is walk with no repeated ﬂ
vertex (or edge) \

» Closed if vy = Vg

« Cycle= closed walk of length >0
with no other repeated vertex or
edge




CO nn eCtiVity - b reachable from a if exists walk from a to b
« Properties:
COnNNECTIVITY: <&, b connectedif exists walk from ato b + 2 reachable from self. (reflexive)
. * Properties: » Walk of length O
b c, d reac hable from o ' a ;‘::mr?d” e « a connected to self. (reflexive) o F biteh \aﬁm
@ — @ cuni'ke vndivected graph, * Walk of length 0 reachable from a—{symmetric} 2
/' @ » a connected to b iff b connected to a.
- o eV _ M (symmetric) sReverse thepat
@ @ not ssmmeh-.c L4 L) & r} « Reverse the path - breachable from a and c reachable
> - not reversible |« aconnectedtob and b connected to ¢ from b implies c reachable from a
. o b ¢ | implies a connected to c (transitive) (transitive)
- $ransitive' ®A~n 0 Ao | « Concatenate the walks « Concatenate the walks
. ia.bs ib,c% & iq (i Stronal ted | : v , A C&'}w%rg’\f»r/‘
v . 9ly connecte | * G connected f every pair of vertices * a,b strongly connectedif mutually 7
Cophected reachable 4 .

* G strongly connected if every pair of
vertices strongly connected

STRONGLY ComnmECTED:
ca,b (vertices) strongly Connected (f motually reachable 0 SC A UL
) reachable
*8raph G Strenaly connected € every pair of vertices is
« G strongly connected if every pair of
ConneCted Components vertices strongly connected

Strongly connectedl.

f® C Strongly connected components

S can have edges go b/+
Strongly connected components

Strongly connected component (SCC) of
vertex v is subgraph induced by vertices

strongly connected to v.

(i.e. V' = {u|u, v strongly connected}
E'={(ww) € Elu,w €V'})

» Connected (by transitivity) » Strongly connected (by transitivity)

* Allof G if G connected « Allof G if G strongly connected

(OIFFERENT from connecied come.) 1
* Every vertex/edge is in exactly » Every vertexis in exactly one SCC of |

one connected component of G ;

“ G « Can have edges between SCCs “

LonneCO-e:A come. Gl |

then there 's 23 pa3th from a +o b.

Connected component of vertex v
is subgraph induced by vertices
connected to V.

(i.e. V' = {u|u,v connected},

= {{u,w} € Elu,w € V'})

THM: (¢ there /s 2 walk from a +o b,

EULERIANS:

Which digraphs have Eulerian tours?

- Closed walk is Eulerian tour if uses every edge exactly once and visits every

vertex
« Graph is Eulerian if has an Eulerian tour

* Gis Eulerian =
* Every vertex has indegree=outdegree (as opposed to even degree for
undirected graphs)
* G strongly connected (as opposed to connected)

DiRecTED Acveic Geraepus: (DAG) directed graph with NO cycles
Ex: 4ree, state mach/nes
& =D e —~—)o—r o

L > VT

O 1
DAG! not DAG 0AG!
(no cycies) (oop)

CONS TRAINT GRAPH:
Ex: gerhng dressed has constraints
ayb iFF pot on a before b
b reachable from a (fF most put ©n a before b

lefs right
pants sock sock :
Shirt
/ >
leer right bett jacket
stoe stioe l

Coate— S f~— 1oy

& peview (w.o. (4q)
. ) lefs right
CovERING EDGES: Oney path blt endpoinks  pants Sock sock P
~Hasse oliagram owiy has these TN
\ecr cight / Jacfef

REOUVNDANT EOGES: edqge that doesvit q¢
3¢ © ive shoe stioe belr
new info \. Scarf
Cozte— = hat



MINIMAL ELEMENT (SouRCE): WMo Yin-arrows’” (pants, Socks, shirk)
-can Start with any of Hiese

- LEMMA: 2 minimal element 2lways exists

- Dressing Algorithm: vepeatredly putk on mn'm3l element (TororosicAL SorT)

MAxiMAL EtemenT (sink): wo ‘out-arrows” (swoes, coat, hat)

TOPOLOGICAL SORT:
‘wminimal element (sovrce): no ‘Yin-arrows”® )
-+opologica)l sort of DAG: st of 3ll nodes in graph s.t. each node 2appears earlier in the I'st than

every other wnode reachable from v
-every DAG has owne
- topological Sort 23lg9: pick minim2al element, puk next on 1'st, remove from grach

NO TES"
-Some previously non-minimal elementS might now become minima)

Ex: how f25+ can 2 team of dressers dress you? PARALLEL TASk ScHEOLLING

lef4 right
"""\"s sock seck Shirt <,
\W beu-‘/ jacket
shoe Shoe
coat hat
lefs right
g sock sock T
(ef, right be“_./ Jacket
shoe shoe
coat hat
left viaht
s Sock sock Sheet
\ / Taceet
\e€+ right bel+ J
shoe Shoe
coat hat

3 stages, Y servants is fastest for parallel tasks.
-depth of +ree =3

CoMmPRABLE:
‘W Can veach V or v can reach «n
+Some ordering b/t

* (annot process C same Irme (one first, then later on tae other)

[ Ll 1 )

CHAIN: set of nocdles s.t. any pair /S Ccomparable
Ex: Shirt- belt > w2t

CRITICAL PATH: longes) chain — length = § vertices
Ex: Shirt 3 jacket 3 scar fscoat

AnTICHAIN: Set of uncomparable wnodes
cCA2N pProcesS @ same +rme

THM: # rounds needed = length of cribcal path (m2ax node length of 2 chain)
L 1

mMmax len. of chain

[{}]
c

PE: (2) wmustk do in order

(<) Oressing Strategy: Repeat

.process all mnimum elements until oowne

.depth (v) = length of lengest path +hat ends in v
(2 start $ime)

=

* fov izl $o _C-l :
Process all +asks v s.kt. depth(v) =i



. ind iFF depth(v) =0
Vv minimal i sl-a,rieo

Vv, depth(v) € $0,1,2,3,..., ¢

if v can reach w (w2 v), then depthlv)<depthlun)

- 21l prereqs for « have strickly smaller deptHh than

‘number theory, graphs, Counting
-inductien, proofs, sSets, e+c,

Lu/gl2s] -tecture - ReLATIONS & CoumnTINnG {-wonw focus on quid | content tho,

def: 2 binary RecATION R E AxB has 3 paris:

«domain, set+ A

- codemain, se+ 8 (NOT range)
- set RSAxB (subset) : §lab)|aeA,beB set of 2l possible pairs

smallest: @ empty set

AxB wotation: ‘cartesian product of A & 8"

(d:rectonal)

Ex: Sz Zluke, ..., ... 3 Liearning) £ SxC ¢ ORDER MATTERS!
C:3chem, ..., ...3 L § (Luke, Chem), (Luke, SPorts), ... 3 shows reiationships
bt +wo sets
P:= iauad..--.u-f Tleac) S Cx P

T= 3(621ad, chem)... 3
VISUALLY:

‘: Jm‘)"r T

Chem >Paf’”
%need +o know which comes

on lefFt/ right

1ef+ = domain,
right= codomain
these ave
31l +he same!
| 1
—— o is related

ReLATIONS Ex:

‘ashb *aRb 4o p
callb e (a.b)ER
* x C
b * Ria,b)
‘X Ey
NOT 2 FfuncHon (>l arrowout )| IS 2 Founction! @ mest
3 31l nodes mustk S3hsky 1 2rrow out For 2l nodes!
. - is 2 total
2 is 2 total -is sorjective
S NOT injeck've or surj. l-is inject've
say R € Ax8
‘/a b
def: R is 2 Fumcrion (Ff every a€A has 2+ most one beB st aRb La— .
i.e. every aEA has at most one 2rrow out \/_/ .
we write R: A8 for Functions #R(a) means the unigue b +hat a X el o

\ retates +o (if ¢+ exists)

Ex: §: lR-va fooy= a2
d°""3-" cddomain pairs: El“l‘_‘l)l x,4€MR and 5=,+z

- e 3)| xeR \ $083

g .is wniet Suvjbchve
- i’S not injective (ex: 2 & -3)

def: Rc AxB is Torac fF every OEA Was 2| Jvrow out

L & T a2bove are both total

9¢ is not 2 +otal (xzo0 5 ... uncler.) . .
® “Function” often means “total fonction’
R is 2 +otal Funchon ;ff ever A h =
JF s func. BoT nel-.'l-e!-al 3 o€ 25 =1 arrow o ‘partial FunctHon’ Synonymous w/ fonchion
2qis 3 total Fonchon! -can have inputs W/ missing outputs
: -2+ moSt owne arrow out
9: R\ 203 » R \ 203 .not surjechue carefol with names!

9(x)= ';:—,_ func & tot2al v -nok injectsve

$(x.5)) xem\30i2



def. RS AxB s INTecTIVE FF every bE B has £1 arvow in
: i.e. 3 at most one a €A s-t. aRb

def. RSAxB s SorzecTivE FF every bSB has 21 arvow in

THM: if A, B 2are finte sets and R S AxB (s +oral & injective, then

lal € 18).
it instead, R rs Ffunc. & swvrjective, (Al 2181

Ex: #%ot2) + inject;ve:
A 2100t B2£1 in

:><—’: 1Al € & arrows
. . <
.\. 18l —
A 8
def. i€ R CAxB is inj, surj, Func, 8 +otal, +hen R s 2 BizecTion, # matchings are for undirected
cone arrow pointng ‘nie each B, one arrow oul of each B, graphs, but tnese 3are olirecked,
208 A, B €:nite, this implres Al =181 # Sometimes A =8 (same set)
same
set
—
def: R SAxA is called 3 velaton on A.
alb alb asob XSy & examples of relat’ons on sets
ex: aRb when
age

if 6 is a3 qraph, the reacnability relakion 6* wG*v ff 3 walk from « +o V.

DiRECTED GRAPH:

STRONG (ommEcTIViTY RECATION: wSv Ff w 6% 20 vO*u

itn Same
Strowngly
connected
EQUIVALENCE RELATIONS: component
qeneralize meaning of *=' *sameness”
if R< axA.

R is REFLEXIVE FF VoeA, aRa &same as tself
R is SymmeTRIC iff Vo,beA, aRb & bRa &sameness oon't depend on order

R is TRAnsiTIvE iFfF Vo,b,ceA, (aRb A bRc) = (aRc)

def: R s an EQuivaLence REeELATION Ff R is reflexive, Ssmme-hm‘c, dransifive.

THM:. (F R s e€quivalence relabon, Fhere is 3 PaeTiTion of A ‘nte subsets s.6.
every a€A belongs +o precisely one of these subsels S.€&. oRb Ff a,b inn Same Subser,

WEAK PARTIAL OROER:

GoaL: generalize ‘<’ “ordering’’

reflexivel Ex: atb o is weakly less than b & we will onty have +hes

fransitive! @<b a s Skrictly less than b

def: R is ANTISYMMETRIC iff Vo, beA, (aRb 3nd bRa) > (azb) oy exception +o this rule F same element

R is 2 WeAk PARTIAL Orocr iff its reflexive, 3nti-symmetric, & transitve.
Sonty JEF blt this & equiv. rel. s ank’Symum VS. Sy mm.
> partial
THM: f G is 2 digraph, then 6% is WPO ifFF 6 is 2 OAG (directed 2cylic graph)
donly way +o break th'S s +o have 2 cycte



det. o, b 3re CompeRABLE iff aRb or bRa

WPO R S TOTAL OROER 2aka LInEAR ORDER FF 201 pairns 3re compavable

ex: alb on /N = weak partial ovder +hat+ is wot +0+3) ovrdering

« (OUNTING-~
‘hou many shuffled decks of cards? » S2!

‘how many Hrees wil nodes EL 2, -, mF 2 4 W72
ProbucT RouLE: 'Axe] = |lalx|@) How many permutations of a standard deck of 52 1st card: 26 Choices
cards have all the red cards (hearts and diamonds) 2nd: 2s
| AixAzx... xA..I = A x1A2] x ... x [Aa]| before all of the black cards (spades and clubs)? :
Ex: # binawvy sequences of Iength v 26w |
20,13x §0,13x...x£0,13 = §0,13" = 2x2x...x2:2" 2744 26 choices
® (2602 .
BiyecTion Ruce: if 3 bijection A28, +wewn l1Al=I18] S2wnd ‘
Ex: #subsets are Here of £1,2,...,n%?
f: Bin, »subsets of 1, ng
f(anoz,...,an)= Fiegn3 |a;=l§
Flo.1,L1,0,1) s §2,3.4.63 5 ¢ is bijection (need proof)
tz3use so, # subsets is 2"
Sum Rute: ifF A,,..A, are pairwise disjeint. then 1A, 0 ..-0Anl= A ]+ - +]Anl Ex: S¢ iz, ...,n3
EX: 6 Shirts seis of size 0.1,...,n
57
1o Pants Grlo+4d disjoint
(itf. bins)

4 p2airs of shoes

(8 + )+« (2)

[ul10128] - CounTine ¥ REVIEW W.U. (&

Proouver RuLE: |A, x Aax... "Anl = |Ad-1Az)-... - |AW]
NoT
bijection

BisecTion RuLe: if £: A48 is bijection. then lAl=]8I e -
X

not pairwise
Sum RuLE: if A,... An pairwise disyoint. then Jaiv Az L... VAN = LAl + 1AL +... ¢ |A«]

dsjornt

kremember: nt=n. (n1): (...y) -3-2-1

to-ols.

GENERALIZED ProoucT RuLe: (counting orderings / sequences)
A = set of length k sequewces

N, poss'ble Is§ entries

N2 possible 2nd entries -wo matter which Ist entry choseu

Nk possible kin entries - no matter which st k-1 endries chosen

+hen 1Al = Nn,-Nz * ... g

Ex: order oeck of cavds
:S2 ophons For ISt cave
‘St fFor 2nd.-..

‘1 for 125+ cavd

ToTAL CouNT: S2!



EX: DECk OF CARDS, how +o order? Aset of remaing cavols depends

I3 ranks $A.1, 2, 24,5,6,7.8,9,10,3, Q,K3 on previcus cheices, but # of
Q remaining choices does rnot derend
Y 5u,'+s 2 o' v. ’ @g on prev-'ous choices
X 0 H s ¢
52

# orders: 52.-51-5§0-...-3.2.1= 62!

Ex: dollar bills with no repeated digiks
yotal # 8 digi+ serial #s= 108
total # wlo repeated ogits = 10.9-8. ... 4.3 eonly 8 digits
fraction wlo repeats X 0.018

Ex: 4245674 S

CAN'T ALWANYS USE Proouct Ruce!
EX: how many lenatl, 3 Seral codes have distinet olgits increasing left - right
r ok: 123, 0449, 278,789
8A0: 312, 982, 33y Ex O__ Ex: 7 ___
opsh'ons °%+"°"

Owision Rut€: (counting Subsets)

if £: A28 is k-+o0-1, then lAl=k-18I

1A)
How To wse: we kvow lAal, k so can figure out l8l= K degree | deg k (2)
H-to-| & everything in B
Ex: qot mapped +o
4 ¥imes
1Al = 4-181
" n
8 2
Ex: KNIGHTS ©oF Rouno TABLE
‘n knights s aveund rounodl 4able
-seating s equivalent ¢f rotation
b [4 o o
l"‘()r. = bOd = cOa = Job
d a b c
++
c
JOL
o
let P=set of permotations I, ..., n
C=set of cyctic orderings |,..., »n .b.c,d,\
. . . . b.c.d,a,
£ maps .Permui-ahon in P 4o ctyclic order in C Codvonrb, §, aB;
-€ s +otal d.abe/ "I\ o
-eacw ceC mapped +o by n permuiations in P
-f is n-40-1 e c
“ler= s 2 (s
EX: CoumTING UNQROERED SJUBSETS
equivalent question: how many size 3 subsets of $0.1,...93

-bijection: for e2ach size 3 subset, map + to sequence of elements n incr. oroler
€($2,a,23) = £(§9.2,23) = £(52,2,93) = (2,2.9)
let P: # permuiations of 3$o.1,..,93
let S= & size 3 Soubse+s of EO,.--.qg
flao, 0., ... q)=z 200,0.,023 eset of First 3 digrts
€ is tota] CAREFUL: Subsets VS. Sequences

1Pl 10!
ISt = 391 = 317




GENERALIZE:
- let

CounTING LNOROERED SuBSETS
Pz # permutations of $0,1,...,n%

- let Sz # of size k subsets of §0.(,n3

K=t lines
. Flao, Qe 0n) = 00,0, ..., 03 & First k digits
— o —
- F is total —set —
- how many Qo,Q.,..,%n m2p +o specific = $00.4,,..037 = K!(n-k)!
1P| _ ! _{'\) 7. .
1812 kitn-eyt © Kiln-k)! K K]S v choose k*

Ex: 7361528049 —» £3,6.73

73628015446 7

37628154 9
0,..+. bg
£ maps sequence +o £3.6,23 if:

3!
) $be. b.,ba3 s 0., A, 023 2

#options Ffor bo,b,, b2~ 3-2-156

OTHER EXAMPLES: .
-select+ 3 bPP‘ngs of IS for preaa (3 )
-4 yolunteers from class of 2so (23")

- flip 100 coins 3 ge+ SO weads (';3:

CoumnTinG viA SEQUENCES ©F OECISIONS
‘Deck oFf CAROS:
13 ranks
‘Y suitsS
ceach hand =S cards
se¥’

(# recipes):

(%)

-Wow many hands with Y-of-a-kmol?

RECIPE: describes funchon mapping (rank x remaining card) +o d-of-2-k
.pick rank of 4 of 2 kind

- how many S-card hawnds are there?

- pick remaining card

n= # perms,

n choose kin the world of art

Sol Lewitt:
Founder of both
Minimal and
Conceptual Art

&

54!/2
128
20

(261)"2

XS2c 2,
x [, x

inol hands

flrank, remainmg card) » hand w/ 4 of a3 kind

% blc bijection, H 4 of 2 kind = I3x48 (exactly ( way)
- must be same #.

Sometimes not +he Same! not bjjecton EX: 2-+o-1 Punction

Luhsizu]- more Counmine

what f weffcient of x"g""‘ in expansion (x+y)"
Ex (x+y)? - (x+y)-(x+y)
=k {x+9) + 9 (x+g)
2 X2 hg e xyty?
EX: (x4y)? = %3 £ 302 ys3ny?ryl
(%+4)9 = x44Ux3y+63xig?+ Uwg 3 tyy

qroup together terms with same # of xs

& same # of s
SDhow wmany W34S fe Prek terms Witk k x'S

& (n-k) y's
(x+9) = (x+ygy- . (x*g) = 2 x"s 2x""g ¥ ...+ g"
1 x", 249", n.x.yn"!

BinomMiIAL TueEoREM: (X +g9)"

z::o ('l:) xkg“-K

Ex: (a+b+¢)'° > what s aSb2c?

A: # permut: 40aaa bbccc

10! (

s 2¢3!

MULTINOMIAL
COEFFICIENT
(cAFF. notation)

(1-]
s.2,3

)K“‘

BooK EEPER:



INcLLUSION / ExcLuSION:
EX: how many ¥ or queens in odeck?

suom vule: |hearts U queens| = |l + 1@l =13+4 =17 x

BUT! Sumi vule owly applesS when sets disjornt. one Q@ 8 ¥

UNION:
1Al4el-1ane |

counted
+wicl...
Correct i+!

Ex: n=p-q where pF q both prime. how wmany HS n se+ t AP 2....,n3 ace relatively prime to w?

let ApE §1,...,.m3 be #s oivisible by p ie. $p.2p3pP%

ey Ag ¢ 21,...n3 be #s divisible by 9

How many #s not relatively prime? |ApU Aql~= lApl +1Aql = |ApN Aql
n o = q+p -1
WHAT 1s |Apl? e =9 ate
n
WHAT 1s |Aql? a =P

WHAT IS |ApNAqgql 27 v () intersection)
#H relatively prime = n-(q+p-1)

Ex: Si2e of union of 2 seks
each se¢
laveucl = lal+181+1cl &

A subtract intersect of 2 sets A
v -lAne] -lencl -lanc| v
AA +1AnBNC| & 2u sers add AA

A 8

Ex: 'Ae“ lJavBucl =1Al+181 ¢ lcl
-/

Tu+d ey =2

c -langi-lencl-leaal |, o o9
=-2-2-27°-6
+1AnBACl

INCLUSION /EXCLUS ION  dhimportant!

n " n-t
i = - 18:0A5) + = 1A:NA;NAk] + ... + (-0 lANAz---NAA] ‘ )
iL=JI Ai :gi Al l$-Z<.i$n ’ 16i¢j<kgn ’ think, dont try o do ¢

on 2 test: iF given 12rge n,

PIGeEON- Hore Principre (PHP): P-'s?:'-ms holes

i€ J1A1>1el and F: A8 is toial, +thew F s NOT injective. Al 8
Ja.taz €A s.t. Ffla.) =F(az)

Ex: lo pigeons & 4 noles, at 1east
one hole will have > prgeon
Ex: cake walk / mus’cal chairs

Ex: if 226 ppl in room, @ (€25t 2 ppl have wnames starts w/ same letter
>A=zppl R=Ist letrer Fz=mapping of person wl 1st (etters

EX: n (olors sockS. how many socks 4o guarantee 2 matching paic?
>A: socks in drawer; R:color of sock; £ = map of each sock 4o 2 color
d n+l by Pigeyhole Princ.

Ex: 2+ 1e3S+t 2 mnon-bald Bostonians have same #hairs on head
2 «~6SOK Bostoniawns
» 2500k wnot+ bald

2> max hair 2 300K
9 more Bestonians than hair Ccoonts So must be T by P.H:



EX: qgeaph of n vertices, {ake walk length >wn, vis/t Some vertex 22

Ex: l2rge video files
.can send all bits For each Fframe (HUGE)
‘or comeress +hen send
£: M bit sirings 9 £ n bit Strings
§ is ‘lossiess” if injechve (i.e. a,# az imples flo.) # Flaz))

€ is ‘strxtty compressive” f £: n-bit Sirings> < N bt Strings

CAN we have both lossless & Skrictly Compressive?

P_E:

2" n-b't Sirings

2714224 1 =22"-) B <n it Sirings  (stricHy less)
3ny Strictly compressive mae Cawnnot be injective

GeneRALIRED Piceonnote PrincipLe:
if Al >Kk-18l, +then every total Functton AR moust have 2t 1east kil inputs in A that
map Fo some ouvtlput n B

Ex: 8x8 cwess, place 33 rookS anywhere, Can 3lwayS Fad 25 Jdiff. rows/cols
33=|A1>u.8

2(3(4(5|6|7|8]|1 :
o 101587 GTASISITIEI2]  prgconmmes:
ktl=sza ka4 Tyls5(6(7(8[1]2]3
£:rookiabel of |0|6[7[8[1]2]3|4 —entriesw/ same labe]
location 6l7181112131415 are in d:ff. rous/ceols,
718(1(2(3[4|5]|6
PHP says there o1 534567
s 2 laeel with TR (56|78

@ (east § rooks!

ComBINATORIAL PROOFS:
Show [Al=x

Show (Alzy

Cownclude x=y

Ex: what is Zieo (R)
S =ser of subsets of §1,...w3  ea.n=2, §6. %13, 823, $1.23%

" w

_ _ - n

ISI 22" = |Sol+ IS+ ... +ISwl -kzm (k) » 2"= E,o(:)
Sy = set of subsets of Ei..,n3 of size k

|Skl= (%)

CLAIM:

() ¢ i%j, then SiAS;=¢
() 0 s, =S

S0, S;'s are 3 pPartition K fnyin 260
Pset 9: Zo(")(K") = ( ")

w-l
2 (3)
EX: prove (k)- (K-l w K
-let 8 : set of all k-element subsers of n-elemental set L L
- size of 8= {vg\)
2nother way +o Compute s:z2e of B8:

s - +3ind O,
ek Bi: set of k-@lement Subsers con 2innd N ‘j d-‘Sjo-‘nH direct proof
.le+ 8,= set of k-element SubsetrS net contdininy a,

O.ng

-R=-BUB2 & B:, Bz disjoint, So (".é)=lsl=le.l+)szl
BN [27)) since aFFer a. place in set, need +o pick another k-l
“182) = (%') since a. wok in set, so weed +o pick k elements From reémaining wn-l.



Ex. Pascals Triangle
(2)=1

(&)1 ()=
(3= (M2 (2D

(2)” (?):3 li):?’ (33)” ]—»everg row Sums to 2%

Cui221257] - ProgagiciTy -18
-monty h2all game Show question
‘based on real game Show

TREE METHOD: (4 Step method)

step O, assumptions:
-Car iS equally likely in @ach of 2 doors

‘Contestant equally Ikely +o choose €ach door no Mmatter where car 'S
‘- host (monty) moust pick unpckeod goat deer wWith €9u2l probabiliky

step lI: sample space
DEF: (discrere) probability Space is 2 pair (8. Pr) where:
(countable
S iS 2 nown-empty Finite set caled Samele Space
owtcome oOccurs

“Pr ¢s 2 +otal Funciion Ffrom S 2 [0.1] representing +he probability that each

Axiom: want zes'pf(..) = | (+total probability =1 )
L]

CAR CHoICE: REVEAL:
POSITION: e (A.A,8)
(A.A.C) - deaw tree o reveal 3l franscripts

(A.8.c)
(A.c.8)

. P3ch Pranscript 3k2 16aF S 3n outcome

- S = set of leafs
12 outcomes

S=%(xy.2)] 2¢x and 2243

STEP 2. erobability Function
of tree, the chance of Following +wat edge Startmg From kS |ef+

3sSign 3 ‘probability’ +o €ach edge
8 ''Z 4 (a,A,8) 'Iig

e iz (A.A.C) 18

(A/B.c)i/q Pr(w):= product of values on edges +hat lead +o w.
(A.c.8) /q ¥
g
g
‘l’/': SANITY CHECK: weS
"o
gy
g

(VA%

eaf

Pr(w)z 1 v

STEP 3: evewnts
DEF: 2n EveENT is 2 subset AS S

ex: [monty reveals deoor 7
=§(a.A.c),(A.8,¢c), (8.A.c), (8.8 C)3 set of outcomes

ex: [win by switching] = $(A.8.0), (A.c.8),(B.A.C),(B.c.AY,Lc.A.8), (c.8.A)3

STEP Y: Compute B2nswer

for 2n event AC S, PrlA):= T Pr (w)
weAn
' l 2
£(A.8.0). (A.Cc.8),(B.A/C), (B.CAY, (C.AB), (c.8ANS = ol v v ol ¢ times = o |

STRANGE Dice: (not dransitve)

NOT TRANSITIVE!!

evicdpont



REOD vS. GREEN: winner = [2vrgevr roll
(2,1)
(2.s)

(2.a)
] (©.1)
(6.5}
(6.a)
(2.1)
(s)
(2.a)

assume dice are Fair & down't influence each other,
- Lo, L .8
Prllred winl)= FT+a*5+5*a (3 >z
fred winlz $(2.1), (6n), (6.5, (1), (2,5)3
2 prob. space iS ouniform when 31l outcomes are equally likely

in this case, Pr(A): m=¢+h+...+L - ll;ll
GREEN vS. BLUE:
3
(M
s
3
J [green wins] = $1(5.3).(S.4),(a,3), (a.4), (a,8)3
3 ?r(éu-'ns):é-v;'-w#‘#*é.:qi
BLuE vs. ReO:
2 "a Pr(blue wins)
® .
2 . = Pr(§(3.2), (4.2), (8,2),(8.6), (8.2)3
2 . _|s
~{a
2

no sSingle best die -—want to be 2nd player & pick die Hrat beats Ist players

Game UPOATE: red x2 vs. green x2

ReEO | REO 2 GREEN GREEN 2

L& <<

84 leaves (34)
$(r.r2.9,,92)| r..rae82.6.73 and a..9,€81,5,523

Pr(red wins) = look @ sums reol can get
(4.8,8.9.9,12,12, 12,13, 14)

Prlgreenwins) =

37
P {reol H-'V\s) = 8

Pr (green wins) = % ;. green wins wore often
2
Pr(Fe) = o



(ui12u125]) - ComotTionaL PRoG

‘what's the probability of event A given that i know that eventr B happens?’

(ond-'h'on.‘\ns

want on @
Ay e
Pe(Al B) = wwat's probabiiky of A givewn 82
Pr(ANB)
if Pr(8) 20, +hen Pr(Ar8)= Pr(8)
e M odrsiile.
Why? Al events B o lorope
§5$IH{
wﬁMfy‘”\
et B
occors
What is Pr(B|B) ?
=Pr(B)/Pr(B) =1
ProoucT RuLe: Pe(ANB)= Pr(A1B): Pr(8) ex: PrlAnBnc) = Pr(ANBNAC)-Pr(c) = Pc(A18,C).Pr(B1C) Pr(c)
GENERALI\RED ProoucT RuLE: P-(ANA2N...NAL) = P-(A)). Pr(AlA2). Perl(as lA,, Az2)-...- Pr lAn|A-,...,An-|) (proof by induction)
given both
A8 A2

Ex: in +ree met+hod: Multiply probabllrk’eS on path +o cCalculare probabilily of reacnhng 2 1eaf

Ex: HALTING PRoBLEM
‘hockey +team best 2-our-of-3 series

- Plw 3 w) = 2/3
cP(w2 L) =143

Sample pFs: prob: event A (winseries) event 8 (uin ISt game) Ang
wWw "3 wnNw wWw ww
wiw nhig wWiLw wiw wtitw
Wb e - wtut
LwWW LVIC ] -
Lwt g Lww -
LL "3 = -
e
—
2/3
P-L[ans] 43 + g . Dl
e . — 3
Pr[AIB] = P~ (8] U3+ g+ 'q

‘2

Pr [wwl= Prlwin 1st game]. P,-[u:.. 2nd same | win Ist 3ame.]

= <23 =3y

P-[ang) 8 _[=z

Pr(ay - ‘12 A

Pr[al1A)

PrLANG]
Pr[BIAT] = Pr [A]
Pr[ANB]
PrL8)
when they‘re equal: if Pr[ang) =0 or P-[A)= P-[g]

PrlA1B8] =

when wnet+ equal: Acg

Pe(A18) < I

Pr(atA) =1




Ex: Twe Coins

$2ir toin: PrH):zPrr]=%
unfair coin: PrH) =1, Pr(T) =0

FLps
. . . see heads,
._:: FH M M Pl‘C—k Fair L
FH FH Coin 4 _El
T T
i FT UM P-[alel = w+%
a FT
[}
z UH
Pl2 P

pi2+ (1-p)  2-P

K Coinflips = heads

p-27% __P
ec[A18] = P-2%4l-p  pe2k(-p)
K hands

PoLLiNG:
‘sameple thousands & ©09/c S24 gqreen
c4els you notning 3b. electorate
> ei+her wost+ voie sreev\ or poll-‘n3 w3s unlucky

Ex: med.c2al 4-es+.'n3
Knowwn: [Doflo of ePopulabon has drsease
if have:
‘looro  False neg.
‘A0efo posihve
‘¢ don‘t have:
-30e/c False pos.

- 00le wne sah‘ve

EVEANTS: A: person has disease
8. person tests posihve

if +, what S probability you have +2 Prl[Aa187]

as t%sst'” A(d:sease) 8 (pos) ANng
disease? Y a x x x
)
N 0.01 x - - PrlA1g] =
Y () -
N . 27 x -
0.63 - - -
I - a_ . .3 72
Prltest correct) = o5 too - oo

LAW ©OF TOTAL PeocgABiLITY: Pr(A)Y = Pr(A1B8)-Pr(B) + P~(AI1B)-Pr(8B)
-different way of Frguring out A ¢ — 3

PrlAnB) Pr(Ang)

disjoint events whose unien s A

¥ when events NoT disjoint, must use inclusion/excluSion principle!

Alico

Pr[ANG] _ T =

= 27 4
Pr[ B8 q/loo"'m




EX: probability that when +ossing 3 dice, | of
Claim: Pr(win) ='12

pF: Aizevent +hat ith dice matches N for iz=t.2.3

Pr(wialz PelAUAZUAI) =P (1) + pr(2)+ Prl3) = ©+5 t£ =3

Tools from counting are so important for

reasoning about probabilities!!!!!!!!
* Look at (typed) lecture notes for probability rules (analogues from counting)
* Sumrule

* complement rule

« difference rule

* Inclusion-exclusion
* Union bound

* Monotonicity rule

(uizal2s])- TnoEPENDENCE

Pec[ANgB]

TS ¢ PrlB])zo

ConoiTionAL PRroB: Pr(Al18):=

(general) Proouer RuLE:

INCE PENDENT of B
impact Pr(Al

DeF: event A s
i.e. knowing B doesw-+

2nd
Ex: 2 Fair, ind Coins I sanity check u:,':
1St HH 2
EVENTS: 9
A: Is+ Flip is heads 5
8. 2nd f1rp is heads .
i
SAMPLE SPACE: EH,ng
[
Az e . H), (4, T3 “
8z §v.T), (.®)3
CHeCK Pr[BIAT=P-[8]
T v 1
GAMBLER'S FALLACY: (F 100 fi11pS comeS oot H, wext
ARE Coins Tosses Fair? pearsi diacoins
Ex: Two RIASED CoinS: HH
fup 2 ind. biased coins
EVENTS:
A: Ist fiip s H (probabil ty q)
8. 2nd FlIiP VS H (probabil'ty qj
SAMPLE SPACE: §h,T3?
Az (e . HY, (4. )2
8= $(u.T), (.3
N weird part
Ex: event S = 2nd Ffi:p S same as First $Hy, TT3
n is S ind. A?
q
L ]
4 Pr(sl-=3 ] independent! eveu
L _4 Haoush seems I'ee
“ Pr[s1A] =3 swouldl be dependent

-

twem s

moust

~Ne 1,...,632

X WROANG:
need $o do

they ave

NO T d.'s_fofﬂ‘.

inclusion [exclusion

rewrstten

PrCANB] = PrL@].-Pr(AIB] = Pr[AT-Pr[RIA]

i® Pr[A18]1 =PcCA] o Pr(8] =0

be T = wrens!

is S
HH TT
Pr(s]= pq+ (1-P)(t-9)

= 2pq-P-9q ¢+

Pr(s1A] = q

independent of A:

Skt

So/so

2lways
H)

/

r’hewn q:é or o= |

or p=0 (edge case)




Ex. fup 2 independent Fair coins
EVEANTS:
A: Ist Firp=H
8: 2ad Frez=H

SAMPLE SPACE: §H,T3? " sca
At S(H.H), (4.T)3 i <
8: §(u.ml} A Pr[AI8] =
ok Mdepeg;‘ewf uniess Pr[A] =l or Prf8]:=0
- o cA
priels ! Pr(ane]
Pr(BlA]=3 -~ 8 * ind. ofF A Pelal8)= Pr(82 = Prl8]

Ex: A,B8 d:sgoint @

P
Pr[AlGj: ;f—?::]= ()

no+ independent vniess P~LAT =0 eor Pr(8l:0o

more exameles:

-bank Failures

TWianing states in prez electrons

-draw?na 2 cavds from deck
- a2Ffter see Is+ card, know second card won’'t pe
- i€ sShofFle mawny +mes, will + be independent?

- Skirt lengths vs. Stock market ?22
- Shopping For beer & dfapers??

(INCEPENOENT version) PropucT Ruce:
s calcw 1dPon 'S 3 w3y +o Show rinodlependence

-use carefoully! independence
PRoOF: +wo cases
Y Pr(B8] =0 monotonicity rute (L19)

-Since Pr[ang] < Prl8], PrLANG] =0

-PrfA].PrL[B8] =0
2) Pr[8] 20 _general produck rule

-Pr[ANBY = PrlRT-Pr[Aal18] =Pr[8]1-PrlA] - fFf A independent of 8

CoroctARY: Tindependent of‘ is Symmernic

PROOF: Pr(ANG]) = Pr[8NA] 2nd PrLA).P-[83 = Pr[8]. Pr[A]
i€ A independent of 8, +hen:

by 2assump. —>» Pr[A] = Pr[A1 8] = PrLANBY / Pr[B] & cond. prob.

PrLANG)
TA] = Pr[B1A]

So B independent of A +too!

se Pr[B]:

CoRoLLARY: A, B8 :ndependent Ff A, & independens
LAW of tot2al Probabiiriy:

PE: (only D, other sidle Symwm): by cases: _ B
Pe(A) = Pr(A1B)- Pr(8) + Pr(AIB) - Pr(8)
if ePrle]=1"

PrfAI&) -P-(B8] =0 = PrLA]- Prl8] since PrlB]) =0

equivatlently, Pr[ANB]= Pr [A]- Pr([87] % account For edge cases!
2ssumed A8 @ (
if Pr[B] #1- are inclepewnd. . e*c’)

| ]
Pe(A) =Pr[R]. PrLAIB] + Pr(E]-Pr[AIB]
Pr(aJ=Pr[8]-P~(ad + (1-P~[8])- P-[AI&]
(1- p/Le2) PrlaT = Prfe] . Pr[A1&] — Pra)= PrlaId]

event A s independent of event B8 ¢ PrLANR] =Pr[A]-Pr(B)



@ (for >2 events)

MU TUAL INOEPENDENCE: f €Cor EiW E2,... En,

vy € 5L2.,..."3\Ei3 we wave that €: is independent
scheck eévery suvbset

from N;ex E;
i.e. Prleid)=pPrl[€ilNjesE; ] or Prlnjes]=0

V 3---c- ill zl"' V\i P"["je:&‘ E.‘j= Tr,as Pr[Ejj

PAIRWISE INPEPENDENCE: if ¢or EiW,E2,.-.. En, Vij& $L2,...n3, i3] we wave that E: is independent
ccheck every pai~ from E;
equivalearly Vi Jj < 2¢2,...n3 i2j we wave P~[Eing;] = Pe[€i]-PrlEy)
weaker properiy than moutudl imd. but sl useful!
7—'

Mutual and pairwise independence

for n=3:
Just need these pr[A n B] = Pr[A] - Pr(B] Need all to hold
three for pairwise Pr%ﬁ n g% = g?{ﬁ} : g;{g% for total
i s Pr[A n C] = Pr[A] - fordotaly
independence Pr{ANB N C] = Pr{A]- pr(B] - Pr[C] independence
less work
for bigger n's
Ex: 9 biamarkers, M. = huoman wmakches markevr ¢

Prlmid = 15 (toole pop. match)

what S Pe [Mlann.‘,l\qu?
i€ motoally ind? 5 75
i€ not o 215

\ ]
if pairwise ind & < o (6 - %)

EX: 3 mutually ind. coins
A: Ist coin = 2nd
2. 2ad =3 d
C. 2,d = Ist

PrLA):Pr(cY=Prl8TI=F
A.8,C = pairw'se incl. e.9. A.B8 (otnher psairs Similar)
PrfAnRY = Prl 30 same] = Pr(HHH] + Pr[Trr]:a'

2ce fuey mout. incol?
Pr[ANBNC] = Pr[HHHD ¢t Pr(TTT])

erfad - pPrl8) - PrlcI=1-3-%

- -
=9
L
&

RirTHDAY PAarRADOX:

‘™ opel
- possible bdays

‘wWhat's probabiiiiy 2 ppl have Same bday?

.assume mout. ind (no +wins /Ccatastrophic events)
s undformly d.’s‘l-m‘bu‘l-eJ

samele space S= §Cb, - bm) b € o33 Ist=n"
event Ex §(b, by, ... bm) €S | Fi %) s4. biT b; 3

for d= 265, m=223 5 prob 2 SOole
3o 2 70e/0
Go 2 99.40/0

Simportant for HASHING (map big Space +o sSmaller Space)
ex: crypltography



[snizsl- RANOGOM VARS
exameple ouvtcome: (s, 3)

3 independent coins: roWl 2 fair odice: o c
R C M Di:zvalue of Ist dice e 3

#heads Ist=H s’a';e D2:= vatlve of 2nd dice Da =
HHH 3 | (| S:= D, +02 i-z-‘*Oz—s
HH T 2 | ) =

s s i =72, 0 the 'se

HT H 2 I o Tz [V ies otherwise] X = D\+#D. = 10
HT T \ ' o
THH 2 (] °
T®T ' o (-]
TTH | [ °
TTT () o ' DEF: an RV s a 2 +otal Funckion Ffrom outtomes #+o R

SR (ihink of them 3s 2 measuvrement)

if flw) is 21ways O or 1, £ is caled 2an INOICATOR Rv
given 2n RV F, we get evewts such as [F=4] = §ovtcomes v St Flw)=43

[feuTl= § outcomes w S.k. Flw)sul
kevery RV is a2 Func. From w3 F(w)
dwhat 2re il +he ovicowmes that (W)

gets __ 2"

RANOGOM VARIABLE: & FUNCTIONS from oukcomes - Vvariables, generalizations

Pr(R=2 N M=) '|E|
ex: Pr(RrR=2 | M:l) = Pr (2 Heads | 21 3 coins mai—ch\ = Pr(m=1)

DEF: two RVS X, Y are independent iff for 2N xyelR, [X:=x] 8 [Y=4] are independent events.
i.e. Prl[X=x 2nd Y=y = Pr(x=x) - Pr(Y=y)

Ex: 2are R and M independent?

Pr(R=2 2nd le) =C; ? these are NOT equadl . NOoT independent
Pe(R=2) . Pr(M=1) = §

Ex: D, 8 S independent?
[0.z4] 2nd [s=23] not independent blc Pr(D.=4 2wd Sz3)z0

bout PrlD='l\~Pr'($=3) >0
EX: S 8 T independent?
not+ independent
Ex: T & 0.7
is [T=1] ind. of [Diza] Fer eacn I1sash v

‘s [T=0] ind. of [0.za) For each lsafh v

Pr(T=1 2nd D.za) = Pr(fa.7-a3) = ';_5 = Pe(T=1) - Pr(0,za)
[ S— e
e Ve

independent!

DEF: 2 collection of RVs Xi,:--, Xnn 'S moutudlly independent ¢ For an vaives X, ---, xnelR,
Pr(Xi =% 2nd X2:Xx2 and ... and Xn:xn) = Pf(x.=h) © et Pr(Xnzxa)

Similarly for k-wise independence, neeod +h's kinod of product identity For every sobset of size k.

DISTRIBUTION:
define PMFq (x) = Pr(R=x) For every possible value, check probab:liky +hat R equals that valve

probability mass Function = POF

COFR(x)= Pr(Rsx) = Funchion (takes in & spits ouk Hs)

ctmulzh'vc distribution func. ‘Ig ;f x=O o +f x<co
- 3/8 /¢ %=1 g f o0gx<lI
Ex: PMFe (#heads)= 2 30 e oa COFalx)= Qi it yenca
g if x=3 718 if 2¢%<3

O etse | if x23 & cuomoulative



1| if w=A
given an evewt A, A := RV defined by AUa(w)* go W w&A
Ci = | with probability VI2 , O wip ‘'l2
Caz=l wip ‘12, O wlie 'l2

:n»[u:cz‘_l =\ wip M2, O wip 'l2 (2nd coin has 2 chance of matching Ist+)

# shootd Eocus on how RVUs effect the ouktomes
indicaror RVS have Bernouill DisTRiBuTIONS Ffor some O¢PE€l,
PMF = é o wip P
I wlp 1-p
given ewvent A,

4da:z RY defined by

_ V' ' weEA
1Alu)_ go if Neﬁ

un'Form di'st. on §\:2,...,n§

‘ wip &
PMF = 2 vip ":' € equal probability
~ %

Ex: 2 envelopes, e2ch with diFferent iny in 20,1, ..., 1003
1) pick an envelope 8 lost
2) keep or switch

2) win F you have (2rger

i we knew some +wureshotd 2 blt +the ewvelopes, e can win.

1) Pick 2 unifermly from $o0.5.1.5, 2.5,...,99.5 §

1.S) Pick one of envelopeS uniformly

2) benave as 'f 2 iS blt ewnvelopes (lower than 2: Switch ; higher: 50-35)
choose prek

env:
z: . Suikch

win _ w/p 2 S0.S ofe

Switch Win

wWia
% can use randomness {o advantage

win

Win

BinomiaL DisTRiIGUTION:
-flip n wmutually independent coins, each H wip p.
how wmany H did we get?

PMF
Pr(exactly k Heads From +he w Eips)

2 Pr(E2n H/T Strings «/ kH, n-k T)

Fnp k) = (%) - (-0



£s172128) - ExpPeEcTATION

e"eI"‘s v:‘uue P:obzb-‘l.'l-s
Ex[R] = Zues R(w)-Pruw]

Coin was bias” p
R= {

S Ex[RY= R(H)-P~[H] + R(T)-Pr(T)

1 ¢¢6 H

Ex: O T

Sl-p+oli-p) = [

ExpPecTATION: indicatOor vars

_ E 1 F wWeEA
ThTle w wea Our tree
u
@ Ex[za) - ZN&S IA(N) Pfl“) A"
T Zuex 0-Pr(u)+ Tiea 1-Prlw) B
» Each chooses H/T, °
T 0-Pr(Taz0)+1-Pr(T A=) cPrlTAaza] puts 2% in pot c:
vseful for angy ola rv. R, Ex[RY = PrlRrR:=1) * Winners split
* If no winner, all split (o o
Ex: R=val from roW of & - sided d-e :
L) ] ! ] ] he"gm\
lRI=1-gr2-3e3cri-Tts TrCT=2S WAl o 0 ML AHM A K
ol win  allle 7 I\ it A
Ex: gambling game = 3 players, | co'n tosser A s
’ . $2 fnro pet * Expected return for A? Arere K wins, 5*3&@
- Player cuooses H/T & puts ‘n [ « See board one. obhur winner 0"(3 Winger  wins
- foSS coin
© fuose +ha+ Ywin' splt pot. (F no wias. Al) split pPot
EXPECTED RET:
!
if a1l picked oun'fFormiy, o,ob. reach awy leaf = 1g
2 s L e
E[@rendan's win) = g [0tori-24i-2cu-27]) so Fair
i€ Curistine + Sean “collude”: 21wadys pick oppos‘te; Some 1eaveS prob O
' : > - b W8 «HT, TH
E[Brendansumn.nssj = %.[.,,,_24_'_2]:_;'- prol 8
equivaient definition of ExpPectATion: Ex[R] = Lxerangel(r) X - P"['2="]
CoROLLARY: i€ R: S £0,13, Ex(rR)=0-Pr[Rz0] + 1-Pr[R=1]) = PrlRr=1])
CorowARY: f R: SN, Ex[R1=z Zio ¢ -Pr[R=i])
THMm: F R: S5 IN,Ex[R1= Z:T) ¢c.Pr[R>i]

PrlR=1]+Pr[

E Pr[Rr>i] = Pr[R>0D]

R=2)¢...

[Rz2) +Pr(R=3T] ¢...

ico
+PrlR>17 = fr
+
1-Pr(R=1)+2.Pr[R=2]+ 3-P-[R=3] +..
\;”
. ) = 2 i-prfR:=i )= Ex[R])
MEAN T/IME To FAILLRE: "’ i
“Flip coin wl BIaS p. wwat S expecred HFIIPS vnt’l heads ?
(indep.). what s expected #Whes until ik crashes?

Probab. p

Cempouilr crashes each thr w/

ANSWER To ALL:



@ internalize

o0
EX: Coin of bias p: Ex[eR] = Zerle>i)
(-]
R= H FfI:PpS wuni/l See H < .Z_o(l‘P)l. « Ist ¢ ‘F'-.PS weed +o be T
= ! -
Ta-i-p) P
Geom. Oist: Prle=z;)= (l-P)i-'-p & probabilty “fail” i-l 4+;mes before success C time &
LinsEAaRiTY Exlx+yJ = Ex(x] + €x[v] & Ex[e-x)=c-Ex[x] 8 Ex[ Eisn C."X;] =‘;“::-E[x;3
PF: Ecx+Yj=u§s(’<+Y)l-)-Pr(w) def E xp
2 Z (x(w) « Yiw)) Pr(w)
wes
= E x(w)Pr(w) + E V() Pr(w) = E[x)- E(Y]) & oniy do +h's ul expectahon!

Ex: given 2 6 Fair-sided d:e, wuatr s expectabon of sum of rolls?
R, = outcome of I(s+ roll
R2 = ovtcom@ of 2nd roy
ExIRr.,+R2] = Ex(R:I + Ex[R2] = 2.8 #3.5 =9 no independence

requrred!

Ex: Coin of bias p, expected tme vatl 2 H:

R, = # 408s untsl Ist+ H
R2= afte Ist 14, & 4oss ovnidl 2adl H

2
xR +R23 = €x(RI+ Eu R =B 5 B

LINEARITY OF EXPECTATIONS: SomsS of indicators

Ex. given n coins, bias p, what s expected toral # heads?

R:=1 of cCoin ¢ ¢S H, O otuerwrse
Ex[R,‘]:P
Ex(#H) = Ex[Z; @)= ZEc(R:I=n-pP

SoOM . indicator vaws

R I {§ ith persown gefs cellphone
to O otherwise

R=R, +R2 4... + R,

Ex(R)-gxIlRi+ ...+ enJ = Er[ﬁ,](- Exfrz]J+...+ Ex [ra] = wn. J;

Es wn diner ordervs
wa'ier vrandomiy spas foodd
expected & ppl that 9eF oish back?

le+ R - g 1 F iFh Pp/son sel-s phone back
T O eotherw'se

(€ R:- R, +Rz ¢+ ... +R,
E\rCR]: Ewcﬂcf Ra+ ., +3nj
€Ex (R ) ¢ Ex fﬂz]f--.. € » cEmJ

sn- 5 =] (difF€. distribub’on, onty fells auerases)



Ex:

(518/25) - ExpectaTion 8 VARIANTS

Ex:

THM

bday paradox: ndays in yr. S5 ppl
'bakass on-"-'erm(:, dost, mot. dep.

“lcollision': 2 Pp) Same bolay
- how many collr’'s'ong ?

R ?_l cf it 3 s#h Pepl s3ame bday
iy = © otnerwise
et R = z_,'cj R

E”[Zi<j g'.‘]
Zicj Exlri;]

sz
(3)- <= 3T

Ex[gj

ExPECTATION:
rv
outcomes

s ample space S Ex(R\ = Es Pr(x)- R(x)

euents A S S

probability Pr: s>(o0.¢] Ex(R+R') = Ex(R) + Ex(R') & lLnearity

rv: S rawnge

oSS n coins P~(wneads) = p, Pr+ails)=1-p

Rz #nheads in wn tosses

X with

3
i weads

xz§n, T3V izfo.3

T \ i jth toss S H
S go otherwise

R = I"'Iz-l-.-- + I

w n
Ex(rR) = -Z| Ex(T;) = jZ' P =np & linearity
3= X

I 1er S be probabilty space and A, ..., A;
s}
eEx(T) = ;_.Pr(A:\ e« T= & evenks that happeen

Pe: (notes)

THM 2: PrlT>0]1 ¢ Ex(T)

EXx:

PE: Ex(T) = 0-Pr(T=0) + |- Pr(T=) +2-Pr(T= 2)*...
2 Pr(T=1) 4 Pe(T=2) +...+ Pr(T=n)
=Perl(T>0)
n=1000

P:‘/lo“‘]"’ Pr(a+ least 12 of n evewts happen)

CorolLARY 3: Pr(T>D) ¢ T Pr(Ai)

THM

(vnion bound)
PE: Thm I + Thm 2

u: (Murpkg's laN) given wn mutoally  independent events A,, ...
PE:  Pe(Tz0) = PrlANAZ ---NAN)
by ind — = T Pr(Aj)
st

3vq. of Sum =

Sum of 3vgs.

be events.

+ V\-PvlT-?'\)

"/109

i - - R -~ Ex(T
1_|-( (1-Pr(a)) s Te Pr(a) - e T Pe(Aj) _ e x(T)
I 3

Ex(R) = 7 Pe(x) -R(x) = Z (Z Pe(x) - R(x)) = Zi P;(l-P)“-‘ (?) = VP & 2assoming independence

-Ex(T)
- e



2Ssumptions: ConclusSion:

THMm 1: nothng

THM 2 nothing

Cor 3 no Hhing

Thm 4 wouhual iad.
THmS® independence

THm S5: Ex(Rr, Rz) = Ex(R,):- Ex (R2) F R, R2 are independent

PE: Ex(e,) - En(ﬂz) = (%X Pr(R.:xS) . ( g y 'P"(Rz=3)>

= Z xy Pr (R, =x)- Pr(R: :5)
X9

= 5 xy Pr(Rizx A Rz:= 5) ¢ uses  independence

:%22 Pr(ﬁx::t(\ﬁz:%) = Ex(ecﬁz)
x.Y,
sk, — )

x9=2 Pr(RR2=2)

Ri,R2 are vrolls of 2 oce
y=(3%)°
i€ independent: €x(r., R2) = z

: 2 T =X 2ist
ie R =zRz2: Ex(r., R2) = Ex(r:2) = Tlh2+2%+ ... +062) = g ¥157

. ?
? E"('&) = Ex(R) X

/ linearity 210234yS works, product role
n
Coin: uv\oleP.'neo‘ 2
o2
/
e b1l 2
TAILROUNDS:
o [
- #heads
bitcoin: P 2 + 202
"a - 200 want o wmeasure SPf‘ead
nvidked 2 + 20 (how F2¢- r.v. dev'atres
12 - 20 €rom wmean)
usp TIP3 € 2
Ha -1
Ex(rR)
—
VARIANCE of rv R: Var(r) = Ex(R-E»’(R)) < E.x(R)-Ex(EX(E)) = O e tmes R went above
-
spread rv cancel wiFk R beiowu
2
var(r) = Ex((R-Ex(R)) )
STANDOARD ODOEVIAT(OAN: o(R) =JV3"(ﬂ) I 1
2: 2,2,4.49, 8+

3 1/q



(S113125)- TAIL INEQGUALITIES
® MARKOVS INEQUALITY
@ CHEBYSHEV INEQUALITY

® cHermoOFF INEGUALITY

® MARKOVS INEQUALITY - “not everyene iS above 3average”
THM: i(f R S wnon-negative rv, then Vx>0,

Ex:ﬁj € l1arge deviation meq.
2 £
Pele 2x] ¢ X &— inversely corr.

Cprebabiliky that R s 2} 1eask 2x its expected val

'
Cor: if R is 3 mnon-neq. rv. Vc>0, [RZc. Ex(RY]< T

PF: Ex(R) = Ex (R ] R2x)- Pr(R2x) + Ex (RIRCx) -
C—

what we
c2are abeout

2 x. Pr (R 2%)

E(RrR)
PrR2x] s ——

Ex(R) = Ex(R R>Ex(R\)- P,-(R)E%(R\)* ex(RIR
? Ex(R): Pr (R > Ex(R))

Ex 4: let x= Y122y Susan’ counting H# ppl who
Ex(R)=1

Pr(R2n) ¢ .L\' in reality Pr(RZn)=‘:—\ S
by markov

Ex 2: cellphone chwheck problem
Ex(R)Y=21 (R:=sum of n ‘ndicator ~)

PrlrR2zn) ¢ &
by markov

4 vpper bound ‘S Carrect but
not tigut - trve prob. S
mouchh Swmaller

iS @ mosSt ‘2 -
F 8 F: 2 mubvally exclus've
d disjervnt euewnts
Prle)= PrleEIF). PrLF] +

Pr(Rcx) PrLelF). PrLF)

Pr(eEnF) + Pr(enE)

cex(rR)) - Pr(REEX(R)) 20

ge+ Cell pnones back.

arkov ¢S tight’’

[
Pr(R 2n) = 77 —in reality (everyone gers phone back)

Ex 3: R = rv that countsS heaos in v candom coin fosses.
Ex(R) = 2
wi2
3 s 2
Pr(R2T) € 3%y ° 3

Why nown-neaqativity in markov?

*l we 'l2
R =
sl we V2

Ex (R) =0
u-Ex(R)
THMm: f RSU Cor Some UVEM, +Hien VYx<cu, Pr(Rsx)$ U-x
. - Ex(u-R) _ u-Ex(R)
PF: Pr(Rex)= Pr(L-RZU=-x) £ Py o

U-RZu-X R markov
R 2 -¥x



CHEBYSHEV: V¥x >0 & any rv R, reminder: var(R) = Ex ((R-ex(R))?)
2
Pr (1R - Ex(R)1 27) ¢ varcle) | (a'uz))

— = = var (R +R2) = Var(r.) + var (R2)

dist. \-’ben-er bound ” IF INDEPENOCENT
O no 2SSumpiions from ME2N

® 2-sided bound 0 (RY= ’var(k)

cor: Pr(IR-Ex(R)| 2 C-Ex(RY) ¢ &3

var(R.+Ra+4... + Rn)

var(R)

var (R) + var(R2) +... + vav (Rn)

_ =
= -‘—‘ + % + e = o
Pe(r232) ¢ Pr(R232 on Kﬁ%) "y nl2 3nry
= Pe(lr-2) 2 5) -
iy 4
< ‘n'q)l wn
(55
cweb.)

PE: Pr(IR-Ex(RY] 2 x)

=P ((R-Ex(R))? 3 x?)

Ex((R-Ex(R))?) _ vaw(?) @
= x x

CHERANIOFF: let R, ..., Rn be any mutually independence vvs st. O<SR; €4 * one-sided bouwnd

let R=R +Rz+...+Rn

-2- Ex(rR)

for any C>1, Pr(RZc-ExLR))S e where 2= Clnc -c+ 4
Ex(r)
[;
(4
3 -(o(%) -nl20
pr-(az -%) < = e 2S w _grows, Pprob. Sheinks
"
%Ek(ﬂ)
3 3
2= ;_Ini'é#l:‘o.(

PF:  a2ppiy Markov to c®



