ttv - 464684110 B1s of set Sk F ey P g | isor: =
e AXIOM: proposition assumed +o be T SET BUILOER: LMEN] isprime(n) g =§z3.s,...3

2 XEA - x is element of A AC B- A is subset of B (every el of A isin8)
PROPOSITIONS. T/ F s+ztemen+ X¢ A - xnotelementof A ANB - inkersection (1S in both A 3 8)

LEMMA:"soePP“ng stone ” Hheorem sraremewnt TRUTH TABLE |Aug-union (elsin eiuer) A\S-set d.’l‘rerenf.?_ciinl\ l.:u:‘:ol- mh:I)e
PREDICATE: statement whose +roth depends ov variable P(n):= A 2nd  p&Hq iFF SiF 8 only iF" ol BN AR A
VvV or T r4 T
n\" n) . 0t : =T, FF= T, TF=F) TI|F| F F F
= : —_— Xand exclosive and (TT=T. ’
STIRLINGS APPROX: w! v Jzmn ( q for targe n: (i K! xor, ® exciwsive or (TT=F, FT=T, FF=F) AR T T
ProoFs:
1 (iwere exes+s)| V_(for an) I \4 couv\}erexamPIeIP-oO. contrapos (P2Q)»(G2P) |ConTRADICTION ‘indirect”
THM: 3 ..... THM: V .. ... THM: V... THM: V... THM:... e apposite
. PE: SUPPOSE NEZL . PF by comtra| BE: pF. by contradiction. asSoMm QLLOSiH
; s sc| PE: vot + ble... | = 2 =
B S ks T e B ovt|  (ae coamien) | 2SSOmE @iwbs? 2 Eind 3 contradichion
- ' 9ive countér ——, contradicting the fact that___ .
INDUCTION: STRONG INOULT ION: CASEWORK:
P(ny:=... P(n):= ... THM: ..
THM: YnelN. P(n) THM: YneMN., P(n) £F: by cases
PE: by induction, using P(N. PE: by induction, using P(n. CASE 4: assuome ... +then, — iS $rve blc
BAsSE CASE(S): P(-)=__, P()=__ BASE CASE(S): P(-)=__, P(-)=__ CASE 2: assuome ... then, — iS +roe blc
INOUCTIVE STER: Suppose 20 and 3SSomEl |NoucTIVE STER: assume Plo). PL), 3+ least one of — most be ’"‘”e)""-
CYH e -_— ‘
CONCLUSION: Since we found by induction, | P(2)... P(n) 2re 3Nl +rue. wTSs: Pln+) (2k2, these cases areé exhauvstive
2 Sy — H e .
we proved P(n) helols for nZ20.

STATE MACHINES: collection of States, specified initial statre, and For each state S, 2 set of possibie transitions +o other states.

PRESERVED PRED P( ): for every State Sk, ifF P(S)=T, PLEI=T. ~Can typically prove w/ casework . »
INVARIANIT: State pred. T for 21l re2chable sta+es if pred. T in start state (P holdls For So & P is preserved for possibie +ransitions)
MONOTONIC DERIVED VARIABLE £(s): ¢ 21ways in IN and £ siricHy incr/decr. 8 terminates after @ most Finitial) steps
TERMINATION: se+ of StateS w/ no possibie +ransitions & prove mach'ne reaches those states
RUNTIME: |F(Se)- bound|

(satisfying invar. NOT guarantee

. e function mapping siates +o vaives
PROVE INVARIANT: % ONE-SIDED TEST 2 state’s reachabiicty)

, . :any. | PROVE DERIVED VARIABLE: -+ TERM. STATES: twe states
.defing invari ant Q(na,Nb,. )= ..o We'll prove w::aQ :s:\;:';:e- €Cs)=..- are (X.9)forx,y,.. EZ
. - 14} " .

‘@ start state: Q(-.-) =..., So property holds. eser s .prove E(s) always in N (voitin reShriction )
-CASES: (C2n 2\1So vse inducttion) [ dal . £(s) skrictly incr/decr.

- #ransition (=, =):... prove P is invar P"T'Ged Y strictly 4 NTmA sTAaTE: (...)

Y = r£: 1S+ S highest, Was lower boun

arangiton (o ) -if ﬁ ' e Py ¥ u.\ TRANSITIONS®
since —, these cases are exhavskue. since P(ne,ne) vue @ the wener: Sfﬂ:‘fmlr_h::“, Wwas upper boun )
Start State & preserved acrosSs tvawnsitions, the Invariant - max steps= YRR (x+2,8-1), (x..,9:.)..
Princiele Shows i+ S iruve @ all reachable states.

- So, found 2 derived var. that by at

(oR: since ....,... is unveacwhable, ...) fez::el ‘Eevm step (8 cand__ past__).

. i€ value Starts @ m, no more that_™_ steps
posSsSible, otherwise derived var will be —

SUMS: PERTURBATION: manipulate INTEGRAL METHOD: Ssqueeze tham.
EK_ 424 +K = nin+) % K2z n(net)(2n+)) Ex: Sz T kIx®:zx+ ux?+Gx34.. when £=+8& weakly incr: T+6(1)2S £ T+6(n)
= = = :
=1 CH e sy x¥+und+. | when £= - g weakigdecr: T+F(W) £S < T+6(D) o
- nel e -%xS = ... oo d-fF!
T = 1extxte..s ",._+“) = kxkz S (|f:;= N0 | TRY: 4, xt=, basic ops. iner: £ 4. +6(N + f;' < - sF(-)*---*F(’HI’ +£(8)
&= o (1-X") oz st term K:' . 2 GUESSICHECK (ANSAT?R): decr:f(n)+ [N £S5 [N v 0(1)
o’ = nzlt rerwms b WL (n+1) -look @ Swmall +erms Since £s — Sef (=) s0,$ e(p(n])
S ¢ = cn-i+l) K= “ -Common: pow of 2, Squares. /b | since Looeir S > SeO(-) "€
Kz - finck partern & prove W induction
fg 00
ASYMPTOTICS: FeO(a)n|fns = | FeEOls) £ |Feols) < |few(s) > | €e2(a) 2 t}e‘ ) we 2
‘Focus on dominant +erm w &= 13c>0 Ine20 w S o e ftwm €B(9
: =§-‘-3»3"m°s'l"£'3.m,we- ordter | FEO() & 155 , atm ! Vnzng F(n)£egln)| "2 3(n) O[+=ogm =% | 3€0(F) 7\ Ogf1e®
toa < X < n%<n! £eS2(9) = flg = Einite £e0tg) fef2ls) .
3 poly exp l-'a.cl- 2n+legn EB(M) | vt ~n logn € O(n) w?e o (1.01n) Jn e w(leg?®n)| Ex: F:n\:n.;(ms:n(wmm‘ STIRLING: (“ )v\
. 2 . " e i e ™= 3n
nee_(l,.f,“T,) Arenamd oo 333 9;::"“0” n2new(n) (;‘:Q’b'l:i(.zn“):(tnﬂ]‘ £eol9) fewl(s) niw]zznl\e
EXAMPLES: |olc 553 mae TIES SCRTOS aes Dic Flan) =1 8 1%/ 200
L8~ $:=3 3. not 25ymptotitaily Comp:
MASTER'S THM: let T(m)=aT([E]) +6m), 21, a2t i(ﬁf;-’ﬁ::z\éc)is‘;‘“;ndoﬂ:ve sequence | LOG Pm:::n:-es:
- s [} = —=x_
¢ CASE 1: if £(m) € O(\n‘“sb‘) i)' for some £50, T(n)ée(n'°5b°‘) PLLG & CHUG: °3ab tog o

log(xt)= 2logx

= s g logpo log _a
CASE 2: if €(n) € O(n ),T(")ee{\ﬂ i -Iogvl) T zaT(T)+ 6w log (ab) =loga+logb
)

2 CASEZ: if fmeQ(w!°%N+E) g af([€]) ¢ ¢ Fm), T(n) €O (£(m) 1—(%):..(.;(%,)4(%)) + €(w)

log,b = Toa =

for some £%0 ck) 3 i get o 1340

#NOT work for <, > ok T (%‘) + n Z _'meclosed DERIVATIVES:
% NOT exhaustive e e =... Simp1Fy isa form f(los x) = £
— : (<) _ < *) - b%= * o /) T xina

L HoPITALS: if xha 30 -0 °" = #men Fa 570 18+ K=logyn 2ud e know Bzn .

;‘d—(lux) s 3
T(n)z a'°%" T(1) +... >

E . (a) There exists a nonconstant function f(n) that is 6(1). . -
EXAMPLES ) : (if prove): ler P(n):z T(n)z ... (induction) c%‘ (o\x) =O*Ino

is eventually bounded within some
€1,is©(1). For example, f(n) = 61+

Problem 6. Recurrences “Then
Use the Plug and Chug method to find an exact closed form formula for a(n) as a function
of n, wh a = 2a —1)+3" forn > 1, and a(0) = 5. .

v, where an) = 2a(n — 1) +3" for n 2 1, and a(0) = (b) Suppose we start with 100 of each token. Prove carefully that the state (50.8) is

(d) Explain why the Master Theorem cannot be used to analyze T(n) = 2T(|n/2]) +
unreachable. If you would like to use a fact from the previous part, you must prove it here.

Solution. We perform a few substitutions to look for a patter nlogn. (Youdon't need to find a ©-bound yourself, but it could be a fun optional challenge!)
Solution. Define the predicate P(n,,ny) := rem(n, + ny,3) = 2; we'll prove that P is
invariant,

Solution. Since a = b= 2, the critical exponent is log,a = 1. The ratios (nlogn)/n' and
Choosing & — 1 — 1, we find that 10,100), the property P(100,100) holds because 100 + 100 = 200 = 2 Tie ) | L P ot . (nlogn)/

+8-a(n—3) Choosing k =7 — 1, we find tha we have any state (np,n) where P(ng,ns) holds; we must show that | ™ /(nlogn) both limit to co as n — 0o, no matter how small € > 0 is chosen, so f(n)
owing any transition from (n,my). The first kind of transition takes | 8rOWS too fast to belong to ©(n') (so cases 1 and 2 don’t apply), and at the same time,

- - - = ), and (n, — 1) + (n + 1) = n, + ny, which has remainder 2 when | f(n) grows and too slow for Q(n'*) (so case 3 doesn’t apply).
‘"‘P‘:’")v *‘;"‘“II”I"l;““~‘d“°“'* For the T“’"“ “'T of transitiohs | This example shows that the Master Theorem is not exhaustive: there are cases like

40 gn g g gk gk - - ny +ny — 3, which has the same remainder as n, + ny, namely, 2. " N A .

23 230+ +2%aln —k-1) oot e start state and fs presorved across transitions, the Tovarian | this one that can “fall through the cracks” by being simultaneously too big for case 2 but
. ‘{‘> L ¥ Hia(n— k- 1) which is in closed form! it i true at all reachable states t0o small for case 3. It’s possible to fit between cases 1 and 2 similarly; try to come up

) ) with such an example.
This can optionally be simplied, to a(n) = 2% + 341 W)+ 8, which has remainder 1, thus it is unreachable. L] ¥



DAYS 8-16; Psers 5-8 MoouLAr Exs: o2 Ex: rem(26'2395¢78% a9)
MopD ROULES® ind 125t digit of 12 wmod 10 a6 24, -1 - l-l)""Eq.,-l Eq-:

N aza (med n) 202 = 4.5042
2) aZb (mod n) = bz a (med n) remainder 2 Ex: HANDSHAKE - bipartite graeh
= = - PRTY 122022 2 (L. R.E), L vertexes = deg lO,
)az,.b 8 bE,Cc DAs,C el S02% 5,0 e penes ® Ao 12 fs pnere
Y aS,b H a+tc S, b+c o 2 wmatching cevering L?
o

ex: 123%7 mod 124

Slaz,b D acsE, be 2 e A Y| 10-1L) = 12- IR\ ‘
6)0Z.b 8 CEncl D at+c S, b+d 24 Trau T T u = iR smore veriices in
- = w R.
7N azwb 8 CSnd D acsS, bo smainer yoser (nomenen) (extended Evctid s 6CO 2lge)
OwnsigitiTy: alb  ox=b GCD: largest integer o s.t. dla, dlb gcd(a,b) PULVERIZER: maimtains:
Ex: 3|12, -51100 ‘bisdivisible bya” ‘o dividesb”| -vlemma: gcol(a.0) = |a| *%cd(:?.kb)) = K-gcd(aL) - ged (x,4) = gcdl (o b) sons
= if alb, blc, then alc “iemw3a: gcd (a.b) = geal (s b-a) 2 7f ged(a,b)=1 8 ged(b,c)=t, invd x=osS+bt .5.,_
i . +he d(a,c) = - ‘linear comb
2 if alb, then albe Slemma: gcd (aub) = gcd(a, brema) L ¢ 50 2° a‘Q[ﬁwLu:., +hen alc 8= au+bv ot aveses
vesd |7 7€ alb B ale, Hhen albic 3 xatyas (x4y)a EuCLID'S ALGO: Ffor gcd X 4y (rem(x.y))=x-2-y
ProperHeSC (9 if b 2 ale, Haen alSbttc for VS, LEZ START: (a.b) INVAR: P(x,4):= gcd(x4)=gcal (o b) 259 20 4a =z 25§9-3.70
(sbtte known as integer near combe of b&c) [ STATES: (i), x2yzO TERMIN: x4y siricHy olecr. bic 70 ua 21 = 30-1-44:70-(259-3:70)
= For 211 C#0, alb iff calcb TRANSITION: (X,4) 3 (Y, Xvemy) Xremy< x when ys x. = 4.90 -1-259
2ka. reiakvely prime 2wnl-n & wni0 END STATE: (x.0) - return x # steps @ most at+b ya 21

a = 49-2.21=44-2(4.70 - 269)

cumese[neMAmDER MODULAR ARITHMETIC: ASub iff Nla-b (ais congruent o b mod n ¢ nla-b) WHEN GCO =1: Ex- = (259-3-70) ~2(4-70-254)
x

‘B ,a) = Ex: 172412, Msg-3 (17--3:220 resx-t 6LO K
THM: if gedlpa)e, then | ! 512, 1253 U7°3220) g, 1 |PLICATIVE INVERSE: of o mod n is g rEsx-ty {3259 <70
there is 2 unigue Selution  (if a =, b, then for 2ny ¢, 3 number 0£ben St. AbSul o if n|(ab-1) bl " 2:19-17 21 (=] S a t b
mod pg +o XZpa & XZeb | Ya4C =, bec «add - vmbeér =2 : e ! " 2 1 =1-82 gcd(a.b)zsa+tb
e+ q™' = ; 2ac=n be 1Hiel i L=ab-qn &b tels the inverse? 6eo(am)=al & 217-8(19-17) _
q-' inverse of q mod p 4“_:;“ b:‘— multiply GCOlbmIFn1 6o =9.17-8.19 5 4-9. A —819= | moal 17
3 nverse of pwmeodq | [ T - e—subtract FERMAT'S LiTTLE THm: R 1:=9-17-8-19 N 917 | med 19
X=a.q7'q + b-p7p a=nc-b QP! =o 1 For o,p toprime (gcd 7S 2) 2 ge0d for |2 [[1 o sexists unen coprime (=
P alSL bt ——exponentate gy: rem(247%,79) =1 blc 74 s prime 3 24 is RSA + 12arae | MOOULAR INVERSE:
No WoRK C2#,.c* not mulrple. 247871 = 2 mod 79 powers (1=ax+by)modx > bySy 1 ¢ brsthe mod inverse of 4 wmod x
IDEA: vey CRYPTOGRAPHY: HisTory: (1=ax+by)mody > ax =yl ¢ a s the mod nverse of i« mod g
owe f::lg::—;;: eo 7| .CAEsAR Ciener: Shifts each 1etter by ceriaim # i 0-25, (Az0, 821...) EX: 193 = 3medl!7 what is y? . Qxxby
b:aonw’ pobie key VERNAM CIPHER: ShiftS @ach letier by random #, cannot send multiple msgs -8.19y =7 3--8 3% S.t OXZy | if gcd (a/b) =1 2 sa+tb=1
_ . : — \q hapeens -
‘ovly beob Can decrypt RSA ‘P2a=reiahively prime '-3 a -2 +17417 ::2“ :‘:h :)_l osyx" and bz,y™
wl private key *PRIVATE KEY: (P, Q,d) D . ,,..9 co\(é,a&-n
-PusLic KEY: (N=PQ,e) ENCRYPTION: DECRYPTION: 9 10 gram®. 9 :
BEFORE: ‘messaqe m, Osm<N-receiver decrypts BIPARTITE: iff V can be partitioned inte disjoint S€+S L &R s.t. every edge
1) generate 2 distinct primes, p8a. (kept hidden) -check geollm,n)=| :\.essa':w ™' back has 1 endpoint in €ach L & R, but no edges connect vertices
2)mepa -emcode message m o secrer regd o within the same se+. X(6)=2
3) integer € s.t. ged(e, Bin))=1 = Bn)= (p-1)(a-1) F"“‘U‘_G F;bl:(- wey Dec(c) = cdmod N "deeslhhlsl = ZMdeg (™) BIPARTITE MATCHING:
u) public key: (@,m) Encm) = MEmod N Dec(Evelm) = M*CmodN s e ) finding max matches in 3 graeh
GREEDY ALG: S) d=geay) L Using Pulveriaer, secret key: (din) FT[ = mwmod N 2 A '“‘”?‘ES(M - 18l T .><.l
vg. Am=
give each veriex smaliest | GRAPHS: N T Ml 1><2><t

Possible color. if deas=n | SIMPLE GRAPHS: G iS 3 pair (V,E) where Vznon-emeby setof vertices 3 E=set of 2 LY Ny

-guarantees upper beund | (undicected) subse+s of V caned edges HANOSHAKE LEMMA (undirected): | MATCHING: each nede has deg=21  F-0~6-ESy

of colors = n+i f‘;—:‘l""(""’"‘f"‘ v= §a.b.c.d, ... 3 for 3 graph 6= (V.€), Z deg(v)=2IEl | MaximAL: M st mem'
el idees E RRa.b3 3a.c3, .3 Ex: deg. S€a. €an% be (2,2,1) bled | MAXIMUM: BM' 5.6, ImI<Im) “n
- empty V=13 PERFECT MATCHING: Size |vi/2 (use an pairs) o v has n' pms
ADTACENT: if 2 nooles & B8 b connected by edge INDUCTION on graphs: (s STABLE MATCHING: GALE-SHAPLEY -gives 1-2 possible St able mat,
INCIDENT: if anedge £a.b3 connecied +o a2 b. Plwy:iz ... 3 might be mere Stable makch.
DEGREE: of verte inci o Stact P() for V, Plo) for £ [DNSTABLE i€ rogue pain N Fie iv assigned pariners

3 vtex v (S # edges incident v BASE CASE: {mott: P18 For ind.) RoGLE PAIR: o 2 e prefer each other over 3!

DEGREE SEQUENCE: all node degs in G I'sted ex: (2.2.4)
PROPER K - CoLtoRING: Fumchon F: V3C where lelsk
S.t. For all edges fu,vieE, Flo) 2 FLv)

TNO. STEP: 2ssume P(_),..., P(n) for |-provides up +o 2 Sizble matchings
-A':)'I's P(n) P c( ) > N V2| -Prove alge Finishes, (s stable, provides perfect matchings
") P(nt) for 3l M2 — FEASIBLE: if +here exiStS 2 S+able matching where alde paired

%(6) cHROMATIC NUMBER: Smanest Kk St G =proper k-col, 1 +2K@ graph & witl nal modes. . |OPTIMAL: most preferred feasible pariner )
2 prove X works & <X does wet work *FIND ProPERTY ¢ -;’en:vsee’a_lv;:s_c:z. ‘| PESSIMAL: 1east possible Feasible pariner INVARIANPT;F:::'GV:rE
s we 4+ #RESTATE PRrO . ~6"’ . o e pokemon rainer &,
BuiLo-Up ERROR: not proving theovem for all graphs . we a:,: u:u,\ 2pply ind. hypo on ‘3:‘:&:5 eg":f:: :c::.’f:’:‘t :::-: :‘;‘s's‘;“:'a"“'::“h 1€t crossed ofF £5 WSt
I‘I;JDULEO SUBGRAPH: subgraph w/ 21 edees in E bl V' induced Sub raph 6', with PROPERTY k) vers * L's cuveent iS preferved.
2 Vit V2 - 2dd back __ 8 relate PRoOPERTY TREES: LEAF: veriex wldeg=1
sinte we Found — by induckionwe | [ CNIO tracyiie  LEAF LEMMA: every tree with w22
3 Ve vy wave proved Pln) for a2l nZ __ . adding edae ‘,:fa..gs cycle vertices has 22 leaves
can repeat : ce +iceS (Vo,...,Vk); I1enath=K (# ed 1| - n verfex, a-redges
vecrices/edges| | W ALY se‘:::g: :2;::; S en(dcs e s‘a)m:\e v;rl—! x‘u:.. 5::)’3) DIRECTED GRAPHS:| [ /o, e 2ny edgl disconnectS graph
CLESEO! oth 2 Jewol INDEG (V) =§ue VI (v.VIEES| . every paiv of verices conmectial by unique PathL
CYCLE: closed w21k of lenath 23 With no repesis E:*‘ @xcept Start/en OUTDEGIVI = §wev(vinleed| TREE PRUNING: For any 182F £ in tree T, T-£ still 2 tree
CONNECTED: Vertices a 8 b iFF existS 3 wWalk from o +o b ) ~ o = . ot
not necessarily closed[PATH: walk with no repeated ver+ices (may not be most efficient) :‘:esm" %ﬁ;“'fﬁ‘tl EEREAN %,"es("h 2-1E) -:]‘). wE e w
st NDSHAK M irec : i ot
vertices can repeat;(close;l [ evLeRiAN 'rou:i usfl:ve:sl:ddse e*a:ﬂ: e:;.’ee L)v-s.l- BN vertexes | e AcTiic Caapns (OAG): directed araphs with we ‘;:'es T
+ r TOUR: close rai tarts nolS on Same ver! * A
° Cyove: Nl vertexes = even dea; Path: Even Except Stari/end CONSTRAINT GRAPHS: .
CONNECLTED COMPONENT: Subgrapi incuced by vertices reackatle by v (o cainG EOGES: only path bI+ endpoints (Hasse Diagram) o
PROPERTIES -GRAPH RECUNOANT EDGES: €dge that doesn't give new info adn
REFLEXIVE: A covmected +o itself A MINIMAL ELEMENT (SOURCE): Mo in-arrows (stard w/ +hese)!8.01,8.0,6.00
ETRIC: A +t+o 8 FF B + o MAXIMAL ELEMENT (SINK): no out-Brrows (end) 6.840,6.857, 6.003,6.034 s
S . U TOPOLOGICAL SORT: list of nod@S S.t.every vertex AP PEArS earier than oiher veriexes
connected come: TRANSITIVE: A connect 8, 8 o L implieS A +o C reacnable from it. EX: 180,801,601, 1802, 602,803,802, 6034,602, 6840, 6003, 6033, 6857
UNDOIRECTED: OIRECTED: COMPARABLE: u 3w reach V., but cavn+ be processed @ same +ime (ordering)
-veriices V & .vertices v g edaes Ecf(v.v)luvevg 3| cHAIN:ser of nodes S-kE- Bny P2Ir 'S Comparable §1801,1803,602,6004, 6033, 68578
f‘L edges EcFiu.viluvev @ uzv3 .cawn have self teops §u,ui CRITICAL PATH: longest chain (1engths B Ver+iceS) = min # terms req. +o 9rad - &
coniy 1 edge bit tu,v3 ~can have (u,v), (v,v) ANTICHAIN: S€+ OF Lncomparable nodes (Can procesS @ Same +ime) 21802, 6042,1803,802,6034F
‘ne seIf loops 'vz;.v"‘“s“" = T outdeg(v)=1El ‘max # of classes posSsSibly +ake @ oncte = an+ichain 2§
"Tesw s 2iEl each (ve, via) e RELATIONS: R CAxE has S parts  RECAxB is a... ryer
Strongly covnected: ave Lien=edges) 1At WaS no repeated veriexes -domain, S€+ A (1eft) bF(o.b) IRAE.A, beB2 FUNCTION: iFF every €A Was at most one bEB s.t.aRb
in3 EE or edges ‘codomain, set B (right) aRb devery atA was at most 1 3rrow out
b d -Path has no repeated veriexeS .closed (F Ve=Vi n 2 (a/b)ER - =
Q N o (F or edges ccyctes ciosed walk 1€n >0 with ‘set RC AxB (subset) R(a,p) |$2™E TOTAL: (FF every A€A Las 21| arrow SutAISI B, g
—c e -closed iF Vo=V ne other repeated vertex/edge EQUIVALENCE: if RS AxA TOTAL FUNCTION: (FE every A EA has =) arvow out
"‘-‘“‘.i‘:"’“:’::::d": ’; ‘,‘!;;e '“‘:" symmeiric | ) REFLEXIVE: iff a€A. aRo (same 2s itself) INTECTIVE: iff bEB has <1 arrow in AL B
ne o v - veréesx -refiexive (walk len=0 a b C wno sy B i 2
- oulal bE reFiexive (Lalk 16n OF - Frams: Hee (concat, walks) 6 wsowo no/[SYMMETRIC: iff Vo, beA. aRb& bRa (no ovdle) SUBTELTIVE: ifF b€ B has 21 arrow inaiRie
:Symmerric (reverse path) :Strongly tennected (£ mutually  \ (|TRANSITIVE: (fF Va.b,c €A, (aRb AbRa)YaRe BITELTION: iFF injective, surjectve, func, & total
“+vansitive (cencat. walks) reachable (for vevtices a.b) (cycle) FANTISYM: iffVa,beA, (aRb 2nd bR2) = (azb) fi?Prove: ouideg=1 & indeg=|
*6 connected f every pair of - G stromgly townected if every pair of EQUIVALENCE RELATION: if R is reflexive, Symmerrsc, transitve EX:
vertices conmecteol veriices sirongly connected WEAK PARTIAL ORDER: if R is reflexive, BntSymmetriC, transibve EX: DAG,
'E.‘A-?':(e::v;:av?ses':o{;as::‘O-deg cor COMPARABLE: iFf aRL or bR& (onless a=6)
weli i e N 5
every vertex & G ¢S Sirongly Conn. TOTAL (LINEAR) ORDER: /f€ all pairs comparable
CounTING:
o ProoutT RULE: |A,xAzx...xAnl = A x[Az] x... X1An] Emuliiply w2ys within 2 case RSA:
A:=2:F() g gisecrion RULE: if 3 bijection A28, then 1AI= 181 ¢ same # elements
Sum RuLE: if Ai, .., An Pairwise oisjoint. then A, U...UAnl=1Al+...+14aa]l  Problem 2. Something about RSA [10 points]
DIVISION RULE! £: A28 is k-+o-1, then l1AI=K-18] = AL i .
arrous out = ¢ ’ » 2nd lel= T divide whe Alicekazam has public RSA key (n,, e,) = (9995,17).
N -+o- & i colivi when .
K-2arrowsin A g ite! (evergining in 8 gets mapped ux) 2GS BT Bobasaur has public RSA key (ns, e5) = (9997, 17).
GENERALIZED PRooUCLT RULE: S=set of lengih-k sequences net+ martes  Help Alicekazam encrypt the message 10 so she can send it to Bobasaur. Show your work.
‘N, possible Ist entres
Wz possible 2nd ... fren Islzninz.....ne Solution. Alicekazam needs to use Bobasaur’s public key. To encrypt, she computes
nichoose ks DoNUTS 8 DIVIDERS: rem(10'7,9997). Using repeated squaring:
Pr i permutations n donuts, k Flavors ak-1 dividers (107, 9997) & TP quaring
S: K B subsets 1
£(00,..0mn) = SO0, Ok (v\ + "-') {"'"‘") (nee-1 ) 100 =gge; 10
—seq—s — — = _ s
° Pl e w! " " k-t ni(k-1)! 10° =ggg7 100
I1S1= T en-k)t ~ Kitmowt - (%) - donuts & dlivderS not distinct 10* =g997 100% =ggg7 10000 =gg07 3
+ thoosing pesSition 10° =gggr 3% =097 9
> N N 16 _ 2 _
ProPERTY: 2% = ‘.._z,(?) ‘2t least one” = Full set of permutations - ‘none’’ 107 =go97 9" =ggo7 81
107 =gg9; 10'°. 10! =gg97 81 - 10 =ggq7 810
EX: d:iff. 2rravngements of 12 (etiers OSTRIBUTION EX: DISTRIBUTION W! 7 tovnsonants alpha betical Ex: DISTRIGUTION where Ts aluays have C least 2 chars bl+ Hew ?
S.it. T in beginwing/enol, 3 TITS never wnext +o not wnecessarily consecohve (1,:) map first 2 ITs +o 3 letters: I--T-—- oo __ $ot21z 8 ‘siobs”
e =W ther
alc ° v choose 7 oF 12 spots For consonants & choose (g) wheve Ts ave seperated by @ least 2 x's
191/21 of remaining leiters (2Ts beginninglewvd) Fill_remaining § slots wl S vowels,

ai
2nd 8! contain IL —) ! Fil_remaining A Slots (omithing Ts) uith rémaining IBHErs: S+ T dupe

é;,—wr. Is are Same




DANS 17-24 + previovs g, .o, aL THm: mr.l.us:onlcxu.uswru

PSETS 9-10 n n- naal
x+44)? = T () K, N-K UA ZIA 1 - Z1AiNnA3l + T IANANAK] +...+ ()" 1A, nAN. .. "
CATTUL (x+3) l<=e(.‘)x Y iz ) iz 185€5&n 1sicjekEn
MULTINOMIAL COEFFE:
ProgABILITY: 10t & o comemA-roauAn. PRooOFS: HARMONIC TFS:
bookeeplr: = —— = (s ) w
#soccessful outcomes st 2:3¢ 2,8 2" = K) s (n " ) _ (Zv\) Ha= 2 L “- nn
# tetal outcomes i€ disjoint y stca‘-s ° r:o("')(“" - Kz1
] UNION: |AVB] = 1Al +18] ooy - (B e[ 2 nti E-l
dIF ?‘?Fk['AUM:IAI&IBI-IAhSl e (")- (K-l) ( « ) :.zsu(lt)= K+ =o.|<ﬂ( )
Mono'rounc-rv-.'s"om laAvaucli=l1al+181+1lcl -1AnBI - lAncl - 18ACI + 1AangAnCcl

event AC B, 3a.f azs.k fla) = fla
Pr[Ad < Prigd Pigeons wotes ¥ a5 !
‘adding possibilikies | PIGEON-HOLE PrinciPee: iF 1AI> K- 181 8 if A28 is total, then £ is

not injective, C 1east k+! inputs
can't make event TREE:

in A map +to Some ouiput n 6.

less Wkety " 0: assumptions Proé Seace: $R,83x31.2.33x 51,23 D for each 1ayer COMPLEMENT : |-Pr[8])=PrlE&)
outcomes: 1: SAMPLE SPACE Prlw)= "1z forevery weS  oF iree PrCAI1B)+ P~ (A18] =)
Pairs H,C where S: non-empty Finite set caned Sample Space - st possible outcomes $1.2, H,T,...3

Hz...,C%... in .. Pr: toral Func. From S 2[0.17 representng prob. +that each outcome occors (Should 2add +o 1)

Lr.an aiso list a11) Z Pe(w)=)

wes - uniform (f 21 outcomes equally l-‘nel_.’

:366€,.--8 eFC. 5. L ouability Funmc. (2SSign each edge 2 Pr)

erobS: pot by tree,

or ‘each outcome 37 BVENIS subser A <SS DISToINT: 2';2:’::15-:': cannot happen tregether (mot. ex.)
has prob. " ConpI\TIONAL PROB: Pr[AIB]) = %1 i Pr[8l %0 DIFFERENCE RULE: Pr [AA§]=9,[A\3]=p, [Al-Pr[Ang]
BAYES Ruce: Pr(A18]-Prl8)= Pr[81A]-P [A] SUM RULE: Pr[AL...UAW] = Pr[A.J¢+...+ Pr[An] € For motb. B
LAW oF ToTar PRo8: Pr(A)= Pr(A18)-Pr(8)+ Prl(AI8)-Pr(8) « for disjoint (can have more events-som a11)
Pe(ANB) Per(ANB)
PRODULLT RULE: P-(ANB)= Pr(A18B)-Pr(8)
(knowing 8 GENERALIZED: Pr(ANAZA...AAN)= Pr(A)) Pe(A.1Az) - PrlA3l AL AZ). .. . Pr(Anl Al Az... Ano)
doesn’t impact INDEPENDENCE: event A ind. event 8 f Pr[Al8] = Pr[A] or Pr[B8]=0O MOUTULAL INDEPENDENCE:
PrCAl) ) Pr(@])=0: ANB S (occurence of one does not+ aFfFect Hre other PriHaH] =Pe[42])
Pr[ANB) ¢ Pr(8], Pr[ANBI =0 (monotonicity)
Pr(Al. Pr(8]1 =0 (Pr cant be nes.)
2) Pr(el#0:
Pr(Ang] = PrlA]- Pr[8] (gener2! preod. ruue\ i€ A ind. B
PAIRWISE I1ND: collection of events A, Az, ..., An where every pair Pr[AiNA;]) = PrlA]). Pr[A;] For 211 i %)
TOTAL

MUTUAL INO: every Subset iS ind (check pairs, #riples, €Fc.) — iwolics pairuiSe Lot nob wice versa

RANOOM VAR: +otal function wwhose domain iS Sample space fomwmon rvs:
TNOEPENDENT: rvs X &8 Y, PIXzxn Y=yl = Plx=x].PLY=y] TNOICATOR RV: V3IUE | with prob. p. O with (-

L
MUTUALLY IND: every Subset ind. (21l combos) UNIFORM: takes on each val £ ..., T with W

I~ DICATORS: given event i, IA = RV defined
Pr @ 2 point PMFq(x) = Pr(R=x) - property: PMFq (k)= COFg (k) -COFR(k-1) L ie i zA
by L;(w)* Oif ikA
[ ' COFalx)= Pr (R x) :
r of 21l v2Is vp to pt R r n i items/coins X EVEMNTS: Ex(x]z PrlT,1+Pe[T;]+... +P-LIn)
:_su..c::s::,.s,.eu. (V\ ] x nelk 7~ Sum of indicadtors for X=I,+. . +In = H#events +that occur
BinomiAL DisT: PMF: Prlx=x] = | K]P " (1-p) X = #succeSSeS in n ind. +ri3IS, each with Success prob. P

same for ::‘::+f ;:“:’j COF: Pr[xck] = f (;‘)Pj('_P)n-.i Ex[x) =n.p (what +to Expect on avg, NoT 2 specif’c outcome)
geometric jso var(xl=np(i-p) n=#+trials, p= Succlss rate
distei botio 2 outcomes

* Prsuccess] stays same bit +rials

ry evem-sx Prob. rlv fvenl-
)
‘weighted avy" EXPECTATION: ExCR] = Z - Pr[R 2] ConoiTionar ExP: Ex[X1Yzy] =z T x- Plxzxly=y]
if independent: E[xny] = ECxI ELY) x€range(r) x€range(x)
EfaX+bl= aElx)+b &iinearity TOoTAL ExPEcTATION: Ex[R] = Ex[RIE,J. P[]+ ex[RIE.])-Pr[E,]...
MEANS £ to FAlL: Ex[0, +02]= Ex[0.+ 021 EJ-Pr[e] +Ex[0.,4+021E])- Pr[E)]
PlFail]) = % p=$2iling VARIANCE of rv R: varl(R)= Ex[[R-Ex(R))2] = Ex[R2] - Ex?[R])
Elttiterations] = Yup = p linciwdes Failure) vav-(ax-o-b).: a"levav-(x) (2 fFound in rec-)
'"de’f"“\”p";:'ssuuess prob. o ST0. DEv: O(R)= IVarlR) if rvs adependent: var (Ri+ Ra) = var(R))+var(Ra)
reach #ridl % .o . . . 0.
L how many +~7alS unirl Ast sucecess? p-l Geom. DisT: Prfc=id= (1-p) 'P ind fa-ls i-l 4:-*85 uv\f-' ith syccess
Pr _any event happens, ELx]:= L exp. tries E) ~l¢eep Fiipping until get+ H
loose but Simple —— UANION BOUNOD: events E: Pr[E i U...UEL] S Prle] +... * Pr[En]) P ontil 1S+ suc. = prob. correct
PrCx2z #] zSh-P“ v;rm) o (R)
Known Ex of rv 2 0= MARKOVS: if R (S non-neqg. rv, then CHEGYSHEV: Vx >0 8 2wy rv R, Pr(IR- Ex(R) 2x) ¢ —5— ( )
ExLr) kviown Ex 8 var of rv, - R
Vx>0, PrlR2x]s === o e R o mean xz C- o (R) N
rv=NOT incicdtor: - [ -Ex 2ec. c?
[ J ;d. i 2t x=c-ElR] CHERNOFF: R R mu!-vbl\P [i|j. iv:a“s: o:f:)?:
Ex[m2])=2 P.-[M:K]'K L : ‘oo, &n = 4 ind. -k 3 =
& Pr[R 2 c-ELRI] € ¢ (neater) cEnxy '@t RER.+ R4 4 Ru leme-c 1) Exlx) €300 For Summing
dbasically muldiply | MURPHYS LAw: Pr[E/U...UEn] 2|-€ for 2wy C>1, Pr(RZC-Ex(R)) £ € independent
indicad
each P;“ by ’: EX: var -Ri = indicator vars -ind for evenis E,2En B X evewnts occur indicater vars
ins+ea of = 2 - 2
344- var (RL- Exlr ] Ex*[r] Ex: indicators & expectation: Ex: markov & ShifFt
I- -+ 2. 5 ;‘i _ 1= ( z R.i) + Z 2-Ri-Rj for each Si, indicator v Tiz 1 if... A}/e.ra.ge body temperature in the herd is 85 degrees. Cow will
16 16 18iQJEN R . ’ die if its temperature below 90 degrees F, and temperatures
beoomes 2 [2 Py +ZZ QiR ] Ii= O otherwise, i ranges from — to —. low as 70 degrees, but no lower, were actually found in the
t 3 —oql L EK[R ] Ex . LA ] we can express rv y= z Ti. For aili; We herd. .
+Z + Ex ng] Ex[R: J ble R = mal var. i=\ (a) Use Markov's Bound to prove that at most 3/4 of the cows
. have Ex(T:i)=PelzI; 211 2 — . by linearity could survive
E. Ex(R:i]® + 2.7 Ex[RiR;] of expectation, Ex[Z 1.] T exlJz- =B 2Pply +o T-70
~ N(N-.) = . ) Ex[T-707 Ex(T)-70
2): —— pairwise ind: E[3;T;): ELTi)ElT;) Pr[T-70220]7¢ v; - s
- .92 c s
= E[I T € = ELXIi])® For 21 it
1€icign ’J{ Jemat = NEx[RJ + NIN-1) (ELR 1)? original: e 8810 o 2
TNExfR] + (NE[RI)*-N(E[RI)? T2 a0 zo

var[R1: Ex[R2]-Ex[RI2 = NEx[R I+ (NELRI)*-N(E[R J)® - (~N-ExLT 1?)
= N.ex[{Ti) (1-ExLTi))



CoROLLARY / THMS:
-Pr(Ang) = Prl8NnA]

‘A, 8 ind. 7FF A, B ind.

"if R: S2§0,13, Ex[R] = o- Pe[R=0] +1-PrfR=1] = P~[R=1)
(FR:SHIN, ExLR] = El:-Prl:b:) = Ex[R)

n
“Ex(T) = Z PrlAi)
(11}

"Pel(T50] € ExlT)
« PrlT>0) € T PrlAi)
“PelTr0) 21~ e'E""" for n mut. ind. events (Murphys)

- Ex(R., R2) = Ex(R.)-Ex(R2) F R., R2 indl
~Cincl 0F A, Cind- B, Cinck ANB. = C ind AUSB

- var[R] = Ex[R?] - Ex2[R])

- var[ar+b] = a2 var[R]

~varlRi+R2] = var(Rid+ var[R2] IF INDEPENDOENT RVUS!



