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« Input: Sequence of n positive integers A = {a, ..

« Output: Is there a bipartition of A into two subsets with equal sum?

(a) Prove that ACCEPT is recognizable. That is, prove that there exists an algorithm B
such that B(A, z) = YES iff ACCEPT(A, z) = YES. [RECOGA 1 2EABLE
Solution: B(A, ) runs A(z) and outputs the result (if any). Then B(A,z) = YES
iff A(z) = YEs iff ACCEPT(A, z) = YES as desired.

to solve them.
(b) Prove that ACCEPT is undecidable by reducing from HALT. N P COMPIC'I‘C

Solution:

UNOECIOEABLE « Input: Sequence of n positive integers A = {a, ..
Input is (A, z) on
Create a new algorithm .4, which on input y, runs .A(y) and then outputs YES. * Output: Is there a subset of A that sums exactly to L? (i.e.,

Output is (A, 7)

Now A'(z) = YEs iff A(z) halts, i.e. ACCEPT(A',z) = HALT(A,x). HALT is
undecidable, and HALT <, ACCEPT, so ACCEPT is undecidable also.

(k) [4 points] If P = NP, then which of the following must be true?
B There is an NP-complete problem that can be solved in polynomial time.
B Every NP-complete problem can be solved in polynomial time.

B There is an NP-hard problem that can be solved in polynomial time.
O Every NP-hard problem can be solved in polynomial time.

‘gnore input. runm Plx), output yes
2)define R(Y): *ignove input, oukput yes”

+ To solve Partition, we can reduce it to Subset Sum. We efficiently convert instances of

Partition into instances of Subset Sum, and then we can use any algorithm for Subset Sum

., a,}, another integer L.

* This is a decision problem. Answer is YES or NO, TRUE or FALSE

-2 o1y R.T.
St be poly rsue poly R
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(oot directions)

»

Consider two decision problems A and B. The problem A U B asks whether its input is a
YES instance of A or a YES instance of B. Similarly, the problem A N B asks whether its
input is a YES instance of A and a YES instance of B.

Circle all necessarily true statements.

@I A, BEP,then AUB €P. V&S i# poiy time Soiveabie, cam just 5218 bors
@)If4,BeP,then ANB EP. ves sewe Gobw
E(c ))If A, BENP, then AUB € NP. yas. cervicicare tel us wen proviom to ure & has cerniticare

If A, B € NP, then AN B € NP. ves

¥

Recall that in PARTITION, we are given a list of numbers A
partitioned into two lists with the same sum. This problem(s NP-complete.

- ether it can be

2lways We can define a decision problem 0-1 KNAPSACK as follows: we ar€ given a capacity S, a
target value V/, and a list of items, which each have a size s; and a value v;. We are asked
whether there’s a subset of items with total size at most S and total value at least V. (The
“0-1” in the name comes from the fact that each item can be taken zero or one times, but not
multiple times or a fractional value.)

Prove that 0-1 KNAPSACK is NP-hard by describing a reduction from PARTITION to 0-1

KNAPSACK. [NP-HARD: KNAPSACK pariition Sp knapsaCk

Solution: Given an instance A of PARTITION, we construct an instance of 0-1 KNAPSACK.
For each element a; of A, we create an item with s v; = a;. Let T = Y a; be the sum of
all of the numbers. Our capacity and target value are S = V = T/2.

If we started with a YES instance of PARTITION, then there is a solution to the instance of

0-1 KNAPSACK: take the items corresponding to either set in a valid partition, which have
total value and total size 7/2.

Conversely, if this is a YES instance of 0-1 KNAPSACK, then we can find a partition: one
A CAst ¥, pa=LY) o X ‘ ¢ : P
= a€A’ side is the elements of A corresponding to items taken in the solution to 0-1 KNAPSACK,
and the other side is everything else. Both of these sets have sum 7°/2.

Incidentally, 0-1 KNAPSACK is in NP, so it is algg NP-Comp]

« Example: A = {2,5,7,8,9}, L = 21 is YES (L = 5+ 7 + 9 is a valid solution, or witness)



LoNGEST INCREMENTING SUBSEGUENCE:

S: Tl j)z1em of Lis of Ali:n] wi (-Isjs g
TaTlist,j) F jz-1 or ALi2>AL)
TG+ §)

negative, or positive. The disapproval score for the j* city on row i is A[i][4]. For example, if

(e.s.10.6.72.91 » [5.6.72.97 .
n = 4, the disapproval scores may be as shown above.

) numbers_larger than ALY o0 ) possible journeys, Srini wants to know the maximum product of disapproval scores of

the cities he visits. In our example above for the particular values of A, the maximum disapproval
score corresponds to the path marked and has value (—1)(—2)(—2)(-1) = 4.

R: Tl j)=max
65 T (o, -1)

Design an O(n?)-time Dynamic Programming algorithm that returns the cities on the path with
maximum product of disapproval scores. You may assume that all arithmetic operations take con-
stant time.

Jution: | DP* Tmax & Tmin |

As with the arithmetic parenthesization problem in R19, we don’t know when we want to maximize
the product of a subpath and when we Want o minimize it. So we’ll do both.

Alternate:

S: T(i)z1en of LIS of ALi:n] uUSing ALl

R: TG)= temax £ TU). ALIICALI] 3
i<jen
SRTBOT for the coin row problem

« Input: an array A denoting the values of the coins. Subproblems: For 0 < j < i < n, let Tiax(4,7) and T (4, j) be the maximum and mini-

mum (respectively) posisibleiproducls of disapproval ratings of southward journeys starting
at C[¢][4].

Note that we allow i to be n, which is a fake city south of all the real cities—this makes our
base case simpler, since we can consider the journey’ that starts at such a fake city and does
nothing to have product 1.

S Let M(i) be the maximum value of coins we can pick from A[i i, for i € {0,...,n — 1}.

R M(i) = max{M(i + 1), A[i] + M(i +2)}, fori = {0,...,n — 1}.
T Each M (i) depends on M (i') with larger index ' > i. Therefore, we can compute M (i) in
decreasing order of i.

Relate: There are two places we could go from C[i][j]. Whether we need to maximize or mini-

B M(i) =0ifi>n (e if Afi i . .
(1) =0ifi 2 n ie.if Ali:] is empty) mize the product after leaving C[i][j] depends on the sign of A[i][j]. We get the following

O Output is M(0). Note, however, that we may want the actual list of coins, which we will recurrences.
discuss next.
Ald][j] - max(Tax(i + 1, 7), Tmax(¢ + 1,5 + 1)) if Afd][5] > 0
T There are n values M (i). Each takes O(1) to compute for a total of O(n). Tontii) =1 0 [105) - max(Toa(i o 1,), Tl + 1,7+ 1)) o Aﬁm 7
! et ; . . . A

S T(k,u,v) = minimum weight of a path from u to v through vertices in [k +1]U{u, v}. Ali][j] - min(Toin(i + 1,5), Twin (i + 1,5 + 1)) if Afi][j] <0
The notation [k + 1] means 0, 1, .., k. [APS P: FLOYD WARSWALL Al] (T4 1,9), Tnli + 1, +1)) i AR > 0
R We have the choice of using node & or not. A shortest path that uses & as an intermedi- Tin(i,5) = 0 if A[i][j] =0
ary node is formed of a shortest path from u to k using only [k], ie.,0, 1, ..., k—1, A[[7] - max(Tinax (2 + 1, 7), Tmax( 4+ 1,7 + 1)) if A[1][j] <0

as possible intermediary nodes plus a shortest path from k to v also restricted to [k] as

L . It would also work to take the max or min of all four possible products of A[i][j] and a
possible intermediary nodes. Therefore,

relevant subproblem.
Tk 1,u, k) + T(k — 1, k,v)
T(k—1,u,v)

. ‘Topological order: Ty (i, j) and Trin (i, §) only depend on subproblems Trax (7', j') and Towin (', 7
) mm{ pological ord (i,4) (i,5) only dep: P (#.) (i".4")
T Decreasing k.
B T(-1) = w(ie. T(~1,u,v)
vertices between u and v.

Base case: Our recurrence breaks down in the last row (of fake cities) when i = n. There we have
Tonae (1, 5) = Tax(n, j) = 1 forall j.

(u,v) for all u and v). There are no intermediate

Original problem: The maximum possible product is 75 (0, 0). We can follow use parent point-

O T(|V],-, -) contains all pairs of shortest paths without any restrictions. ers to construct the path, by recording which option was the best for each subproblem.

T The table T has size (|V|+1) x [V| x [V| € O(|V|*). Each entry takes O(1) work for

Time: It takes O(1) time to solve each of O(n
atotal of O(|V]?).

ubproblems, so the runtime is O(n2).

. Problem 1. [20 points] DP (1 part)

iven a string S of length n where each character is one of the 26 English characters, design an O(n)
/namic programming algorithm to compute the length of the longest strictly-increasing sub-sequence in S
n alphabetical order).

lake sure to use the SRTBOT OP: state=consiant

olution: Treat the characters as integers (1-26).

S Let T'(i, k) be the length of a LIS in S[i :| with start value > k. (0 < i < n,1 <k <27)

T(i+1,k
R T(i,k) = max TG T LR o
1+T(i+1,8[) +1) if Sli] > k
GREEDY T Decreasing i.
(a) Describe, analyze, and prove correctness of an O(n)-time greedy algorithm to compute the B 7'(n,k) = T'(#,27) = 0 forall ¢, k.
maximum number of disjoint paths that can fit in the tree. Your algorithm is given a rooted ¢ 7/(0,1).
tree 7" and an integer & as input, and it should output the largest possible number of disjoint T The table T has size 27(n + 1) = O(n). Each entry takes O(L) to compute for a total of O(n).

k-edge paths directed towards the root in 7. Do not assume that 7" is a binary tree. For
example, given the tree above as input, your algorithm should return 8. Note that you only
need to return the number of paths and not the location of the paths.

(d) [10 points] Give a full greedy algorithm to solve the problem. Prove correctness and analyze runtime.

Solution: Algorithm A: I GREEDY: 219 proof wl indicontra. |

Prove the greedy choice property you rely on, and argue the correctness and runtime of your

algorithm. 1. Order the intervals by b;. O(nlogn)
2) | 6e: consider node X wl herght K. 2. Set§ e gandb e —oo. o
3. Scan the intervals in order:
Use 2 path starking from 1628 2 ending @ x. , When processing [a;, b;], ‘add b; to S and set b  b;’ if a; > b. o(n)
4. Output S. 0o(1)
6cP: there 3 @ 1emst 1 opiimal Foln Contdining GC. Total runtime: O(n log n). To prove correctness, we use strong induction on .
PF _of G6CP: contider optimal Soin S +ha+ doeswt make GC. 1. Let GREEDY be the output by A, and S be an optimal set of points that contains the greedy choice
b (which exists by (b)).
iF S ooeswt vse x 2t 2w ue can 3dd new path 2. For contradiction, assume that |GREEDY| > |S|.
, § ’ at sta
if S odoes use x can St pI dlown 3. Let 7' be the set of intervals not covered by by, i.e. intervals that start after by..
4. Note that after inserting by, into S, A ignores all intervals covered by by, and the repeats the process
Alg: on 7', solely for which A would output GREEDY \ {b;}.

©u

‘Siensaiul uuy

. By the induction hypothesis, A is optimal for Z’ (as |Z'| < n) and hence
FBCursively compute Weight of @ach vectex
GREEDY \ {bi}| < |S\ {bx}|-

15591081100 0 Jooid

cwhen node x was height k.
6. Therefore, |GREEDY| < |S], a contradiction.

i
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Problem 5. [45 points] Reduction (3 parts)
Erik, Mohsen, and Brynmor want to celebrate the end of the semester by throwing a party. However, among

2. N . . o s
remove x 2 their mutual friends, there are certain pairs of friends that cause trouble together.

its Subtree from tree

F
3
H
5
H

The Professors still want to celebrate, so they come up with a plan: host 3 parties (i.e. Erik, Mohsen, and
Brynmor each throw their own party, so the troublemakers can go to separate parties and everyone can still

celebrate). [REBLCTION

‘We define INVITE-FRIENDS as the decision problem: given a list of n friends and a list of n pairs of friends

Otm) post order icaversal.

Induction:

105 [N} 84 08 ‘souBISUl BuIewWa1 B4} UO [ewdo S| WyHOBle

PF by

‘sou "ysadosd e0ioLo Apsab au} Ag SIRAIIU] UL LM BoLE)

8C: heignt <k E B who cause trouble together, is it possible to invite everyone to one of the three parties.
1nd_Step: consider opb. solm H For example, if the Professors are friends with [Maggie, Selina, Daph, Ragulan] and the trouble making
o pairs are (Maggie, Selina), (Selina, Daph), (Daph, Ragulan), (Selina, Ragulan), one solution to the problem
by 6CP, can Bssume S makes Same Ist Siep 25 G. is: Maggie and Ragulan could go to Erik’s party, Daph could go to Mohsen’s party, and Selina could go to
Brynmor's party.
s2y we removed node x o ge+ T Unfortunately, INVITE-FRIENDS is NP-complete. Poor Professors! To console them, you will write a great
proof arguing that the INVITE-FRIENDS is NP-complete.
WE  ca2n consider our aia. +o have fun on T' up to this point
by TH, 16°1 2 1S'l = 161=]s! (a) [20 points] Show that INVITE-FRIENDS € NP.

greedy does 25 good 25 opiimal

(b) [15 points] Describe modifications to your algorithm in Part (a) so that it runs in O(nlog k) time.
Analyze its runtime, but you need not prove correctness. You need not re-state your SRTBOT other
than steps that you modify (if applicable). Correct o(nk) algorithms will be eligible for partial credit.
Solution: Store X (j) in a max-heap cross-linked with a DAA. At each iteration of the R step, we
access the max m of the heap and compute X (i) = |m/2] + p;. We then insert X (i) into index i in
the DAA, insert it into the heap, and remove X (i — k) from the heap (if it exists).

OR [mAx HEAP/AVL :

Store X(j) in an AVL sequence augmented with the max in each subtree. At each iteration of the R
step, we access the root augmentation rn and compute X (i) = [m/2| + p;. We then append the new
X (%) and, if there are more than k elements, delete the first.

Solution: To show that INVITE-FRIENDS € NP, we show that we can verify a certificate in polynomial
time.

Let the certificate be three of friends: one list of attendees for each party.
Verifier: For each party and all pairs of friends invited to that party, check if any pair will cause

trouble. If any pair of friends at the same party cause trouble, return NO. Otherwise, return YES.

If the professors have n friends, the certificate will be of size O(n).

Runtime for the verifier algorithm: For each of the O(n2) pairs of friends at the same party, scan
the O(m) list of friends that cause trouble. Thus, the verifer takes O(n?m), which is polynomial
in the size of the instance of the problem (which is ©(n + m)).

(b)

(@)

Each city has a disapproval score, which is an integer. The disapproval scores may be zero, (a) Given strings A, B and C, design a DP algorithm that checks in O(|A||B|) time

whether there is a way to merge A and B to produce C. You may assume that |C| =
|41 +1B|.

For example, if A = abab, B = aabb and C' = abaaabbb then the output should be
TRUE as C' = aba+ aabb + b where the first and last substrings come from A and the
middle one comes from B.

Make sure to use the SRTBOT framework.
Solution:

We assume that |A| = n, |B| = mand |C| =n+m.

DP: merge s+ S

1. Subproblems Let T'(i,j) = TRUE iff. one can merge Ali :| and B[j :] into
C[i+ j :]. Index i runs from 0, ..., n and index j runs from 0,...,m.

2. Relate We consider the case where the next letter will come from A and B by
considering incrementing either the pointer at  or the pointer at j, respectively.
T(+1,7)if Cli+j] == Ali
TG.3) = V{ TGt irCL +ﬁ == [[7]]

We also handle edge cases—if one of our conditional statements requries checking
an index out of range, we assume it to be FALSE.

3. Topo. Order by i + j

4. Base T'(n,m) = TRUE.

5. Original 7°(0, 0).

6. Time the table 7" has size (n + 1)(m + 1) € O(nm). each entry takes constant

time to compute, for a total of O(nm).
Frieren has a row of treasure chests numbered 1 through n. There is an unknown s
such that chests 1 through s are safe, and the rest are mimics. Frieren can open chest
and learn whether or not it is safe by spending a positive amount m; of mana.
Frieren must compute s without opening more than k mimics, given k and all of the
'm; as inputs. Frieren will use the most efficient algorithm, in terms of the worst-case
total mana cost. For example, if k = 1, then the only correct algorithm is to open all
chests in increasing order of 7, which costs Z m;.
Design a DP that computes the worst-case mana cost of Frieren’s algorithm. Your
DP should run in time O(n®k). Use the SRTBOT framework, but you need not prove
correctness beyond that.
Hint: Discuss with friends or ask course staff to make sure you have the right sub-

problem definition!
Solution: Give as hint: M(a,b,c) is the worst-case cost of Frieren’s algorithm on
input (¢, m[a : b])

S M(a,b,c) is the worst-case cost of Frieren’s algorithm on input (c,m[a : b]),

where0 < c<kand0<a<b<n
M(a,b,c) = minb(m,, +max{M(a,q,c—1),M(g+1,b,c)})
a<q<

Decreasing b — a
M(a,b,0) = 0oifb > a; M(a,0,6) =0

R
T
B
0 M(0,n,k)
T

+1
There are (n ) % (k + 1) subproblems, each of which takes O(n) time to

compute, for a total of O(n3k) time.

Modify your DP so that it runs in O(n’k log n) time. (Warning: this is quite hard.)
Solution: Give as hint: Notice that M is a decreasing function of a and an increasing
function of b. What does this say about how to leverage binary search?
Per the hint, we observe that the difference between the terms in the max is monotone.
This allows us to remove the max entirely by simply conditioning on whether g is
small or large. We binary search for 0in M (g +1,b,¢) — M(a,q,c—1). This gives a
q* for which

min (mgy + M(q+1,b,¢))

<q<q
minb(m,, + M(a,q,c—1))
<

M(a,b,c) “
9=

min

We store M redundantly in O(nk) AVL BSTs. T'(b, c) maps a to m,_; + M(a,b,c),
where m._; = 0 for sake of notation. 7”(a, ) maps b to m;, + M (a, b, c). We augment
each T'(b, ¢) and each 7"(a,c) with the min function. Now the top term is a prefix
Let A = |ag,...,a, | be a sequence of n positive integers with sum m = ) A.
Say that a partition {A;, A3, A3, As} of A into four subsequences has quality Q =
min{}" A; | i € {1,2,3,4}}. Describe an O(m?*n)-time algorithm to find the maxi-
mum possible quality of a partition of A into four subsets.

Note: After solving this part with a SRTBOT in O(m®n) time, think about how you
can implement it with an algorithm whose runtime is also bounded by O(4"). It is not
necessary for this part and should not change your DP or SRTBOT fundamentally, but
your code in Part (b) will need to meet both runtime upper bounds.

Solution: I DP: partition 4 subse+s |

S z(k,s1,52,53) (where 0 < k < mand 0 < s; < m) is True if it is possible
to partition A[k :| into four subsets Ay, Ay, A3, Ay with s; = Y~ A; forall j €
{1,2,3}, and false otherwise

R Integer a; must be placed in some partition. Guess!
z(k+1,8 — a,s9,83), ifap <s (addaytoA;)
. R z(k+1,81,5 —ag,s;3), ifap <s, (addato Ay)
(k, 51,52, 85) = OR z(k+1,s1,82,83 —ak), ifar <s3 (addaxto As)
z(k+1, 51,2, always (add a; to Ag)

-

Decreasing k (z(k, s1, $2, s3) only depends on subproblems with strictly larger k)
z(n,0,0,0) = True (can partition zero integers into zero sum subsets)

z(n, 81, 82, 53) = False for any sy, s5, s3 > 0 (cannot partition zero integers into
any subset with positive sum)

if z(0, s1, s2, 53)
otherwise

min{sy, s2,83,m — 51 — S2 — S3}
-0

Solution to original problem is then given by max{m(0, sy, s5,s3) | 0 < s; < m}
(Can also store parent pointers to reconstruct each subset)

o

Let m(0, s1, 52, 83) = {

-

There are O(m®n) subproblems. Each takes O(1) time to compute. O step takes
O(m?®) time. Total is O(m®n), which is pseudopolynomial in the size of the
input.

If solve order starts with z(n, 0,0, 0) and uses the reversed dependency graph, the
False subproblems can be ignored. There are only O(4") True subproblems, so
the runtime can WLOG be bounded by O(4").

Greedy Choice Property:
Atthe earliest start time s«s**s+, selecting the interval that ends latest is safe. Any solution must

For Y, we instead use a min-heap or min augmentation, compute Y (i) = 2m, and store Y () — p;.
Let L be a decision language. Prove that L is decidable iff both L and its complement L are
recognizable.

Solution: The forward direction is easy; a decider for L is also a recognizer for L, and flipping

its output produces a decider (and hence recognizer) for L.

Conversely, suppose L and its complement are both recognizable, say by algorithms A and B

respectively. We decide L as follows:

Acant loop forever blc together
+hey cover an inputs

LIl @uentuaily S2y YES From

one of +nem.

sInput is =
*Run A(z) and B(z) in parallel
«If A(z) says YES, output YES
«If B(z) says YES, output NO
L and L partition all inputs, so one of A(z) or B(z) outputs YES. The above algorithm is therefore
a decider. It outputs YES iff A does, so it decides L.
1

(b) (20 points] Show that INVITE-FRIENDS is NP-hard by reducing from 3-COLOR , an NP-complete INClude an interval starting at s+s**s«, and replacing it with the latest-ending one does not
problem. reduce feasibility.
- GREEDY: intervals

3-COLOR is the following decision problem: Given a graph G, is it possible to color the vertices of G
using 3 colors, such that neighboring vertices are not colored the same color? 3col & invite Algorithm:

P €riends Sortintervals by start time. Repeatedly select, among intervals starting at the earliest uncovered
Solution: In order to show INVITE-FRIENDS is NP hard, we must transform an arbitrary instance of time, the one with the largest end, then advance the uncovered time to that end.
3-COLOR into an instance of INVITE-FRIENDS .

nd in IN
RIENDS .

Given graph G = (V, E), we can let gach vertex, v, be a

can represent a pair of friends that cause trouble in INVIT!
becomes a valid party assigment in INVITE-FRIENDS .

Thus, we have transformed the instance of 3-COLOR into an instance of INVITE-FRIENDS .

It takes O(|V'| + | E|) to iterate through the vertices and edges, so this reduction takes polynomial time.
Thus, because 3-COLOR is NP-complete, and we can reduce 3-COLOR to INVITE-FRIENDS in poly- Runtime:

nomial time, INVITE-FRIENDS is NP-hard Sorting takes O(nlogn)O(n \log n)O(nlogn); the scan is linear.

FRIENDS . Each edge (u,v) Correctness:

0 a valid coloring in 3-CoLOR By the greedy choice property, there exists an optimal solution containing the greedy choice.
Removing covered intervals yields a smaller instance of the same problem. By induction, the
greedy algorithm is optimal.




SIMPLE GRAPHK:
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edges and

* o self loops
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SIMPLE
PATH:
‘nio edge
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douplicates

(no 100p8)
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REOUCTION: 21g. for
H‘ans(-‘ew-:na one
pProviém +o a2nother
*TURING: ASt8 iff A
is sojved using B8 as
afomic Subroutine.
- Poly time vpper
boundl: Cook red.

"MANY-ONE: ASmB (fF
3 some func. £ converts
input of A ¥o inputof 8
= if £ poly time: KARP

So ASpB8 means +hat
ELinputs o AJm [inputsio8)

#if A reduces to B CANT

3ASSume +we converse

ASr8 in time F(n1 8 8

solved in §(n), +hen A can

be Solved in £(n)-g(n+F(w)

WEIGHTED GRAPHS:

GRAPH DupLicATION:

GRAPH: G=(V.E) iS Set of pairs of vertices vV & edges (pairs of vertices) ESvxV - IEI=0(vi2)

2dj*(v) = se+ of outgoing edges From u
2dj"(v) = set of incoming edges
deg*(u) = |adjt(u)] deg”(u)=|ad; ()]

*lo) =
ZAed' = 1el

ADTACENCY LiST: O (IVI41EL) - OAA, hash, LL
AOTACENCY MATRIX: B(IVI2)

UNOIRECTED GRAPHS:
CONNECTED COMPONENTS: L-v path bl+ vert+ices in same CC

B8FS for each node & Find CCs » O(Ivi+Iel)

(touch €2ch node owce)
EQUAL WEIGHT GRAPHS: FuLL DFS: run OFS from every
#for directeol & undirected

> N unexplored vertex in 6 until
BFs: O(Ivi+1EI) OFSs: O(I€1) a1t are explored. OUVIHIEN

‘9o in 12yer ‘not SP

-3owes ssses: - Sowes SPR ~FINISHING ORDER: wrark in order

:fReurn Snoritn -":?c:?s-‘::? OFS run has explored V & all
ey fror o rear its neighbors. parent FO is

st de + of reachabie 9 . A

R fere st nodes from  DIHBYS > than cuildrew

node (Swortesi, Start node Cchitdh finishesS Firs+)

in 1ayers)
CYCLE DETECTION (Fulldlfs):

srun full OFS. CWeck active
VS. finisnhed for nades

*if 2w edge goes back +o
2 visi+ld bout unfinished
viode, that node /s ancestor
in OFS & forms cycle.

EX: only want 40 return even # paths

-can use BFS +o +rack even/odd

PATH: SEquence of verticeS connected by edges

d (v.v): Shortest path from vav (o0 if no path)
Single-pair-reachability (6,5.+): True if path s+
Single .- Pair-Shoriest-Path(G.s.+): SP & distance JI°(s.+)
Sing\e- Source.Shortest. Path(G.s): SP tree 8 dist. For 21 V Starting @ S.

SHORTEST PATH TREE:
‘Contdins one path From
S to every veriex Vv

féacwavie from s.
cParent array (predec.)
+Cdn convert bl+ SPT &

7 (s.-) in linear +ime.

moc®>

OIRECTED GRAPHS:
STRONGLY CONNECTED ComPs (SccS): 3 v-v 8 v-u path
for vertices in directed graph

@025

CONOENSATION GRAPH:
Vz SCCs of grapw

Ez 3 edge from vertex in Ci+o veriex in 6.

% CO6 must be DAGS! use Kosarajv-Shavis +o make Sces

SvrC Sink Src
a->b & C.

KOSARTV-SHAVIR : Einds Sccs O(vI+(EN)

-run full OFS on 6™V & recovd finisning times fLv) for each
v in veverse fLv]) order.

cfor e2ach v in veu. finiShing order:

-Set curvént=v
if vz unuisited, ronm OFS starting from v. for any vertex

©u wlio leader, set leaderlful =v (grouping Sccs)
intutition: heirarchy of SCCS

-

-1 ATTTSC,| €starts from 3ed, thew 2.1
— 05— 0% 3 3

Ist 2wdl

(v.v)EE. +hen

TOPOLOGICAL SORT: order of nodes s.t.
T.0.za.c.€

U comes beéfore v in order.

so/.o\oe i"e‘::.’_o o sven Ay
S i R - edses e v csareven Misr e SEESETATAEL SNSRI Hne P e
o ; - .
O |[odd ¢ ifend vp nere, path lengin = oddl CHANGEABLE PQsS: O(lVllos Jvi+ 1€1) interface: implementation:
DUMMY NOOES: insert nodes +o match weight ‘build 5 generating RT for Oijkstra PrioriTY Queue: HEAP:  AvL:
AMmust be positive weignt & Finitre!l cinser+t ‘build (A) O(wn) O(wnlogn)
3 . - deiere min O (logwn) cinsert(x) O(logn) Oliogn)
OO0 becomes O-H0—->0-20-0 -decrease key i, new.key) OU) €Fib. heaP  jejere_max()/delete_minl) O(logn) Ol(logn)

DITKSTRA: O(Ivilogivi+IEl) SSSP on + weight graph
-distance estimates olv)=oco except source dls)=0

‘consider nodes in
-for 21 ouvigoin

‘Change val @ i & heapify.up
-Store every veEV keyed by distance es+imate

increasing distance
eodges, reiax +them.

RELAX: if ALv] > ALL] + w(u,v), set dlvizdlv]+w(v.v)

Ruwant +o reiax @ach @dge exacHly once
hdo€snt Work w) negatrive edge weights
‘Cend, d(v)= & (v) EPath reiaxarion I8vmm2a dzackudl

DITKSTRA OIFFERENT METRICS:

min, +: [0,00) 3 minimizes Sum of edge weights along Pa+h. SSSP

[1, 00) & minimizes product of edge weights

™in,MBx: (-00,00) -4 MminimileS I2rgeSt €dge dlong pa+

MAX,MiN: (-00,00) 5 MBRiMITES SMmIIESt Colge along

MBx,X: (0.1 » Mmaximiees product of Rdge ueligwts (an <i)
for p2ths:

min, X

d = pred.

:lev\s Padth
path

TRIANGLE INEG: T (a,c) & J(o.b) + & (b, c)

°.1\bf‘ ¢ For edge: W(a,c

0AG6 sp: O(Ivi+iEl

) > w(a.b) + W(b.e)

) 2cyciic +8 - edge werghts

cStart distances from oo

-gqet+ +opological order W) full OFS

- felax outgoing @dges of Bach node in this ovder.
cif dlv)r dfu] +wlv. V), se+ dlv])=dlv]+wlu.v)
(+riangle inequality)

BF 8 DOAG SP - OIFFE

RENT METRICS:

emin, +: (-00,00) S minimizes Sum of edge weights

fo,e0)
JoHuNSONS:

emin, x:

ALL PAIRS SHORTEST PaTHh:

‘distance bit any 2"

GoAL: output 2 Ivix IVl +a2ble =» 1El €52 (1vi2)
*if DAG: run DAG SP From each node O (IVIIEI+IVIZ)
¢ if non-neg. weights: DijkS+ras from €ach node O(IVIIEI+[viZiogivl)

» make weights non-neqative while presevvin 2
' 2

© d(v) is some funciion on V

coriginal\
trpnsform

for each V. Subtract B(v) from 21l incoming edges 2 .2 S
add @(v) to 21l outgoing edges @ ® ¢(a): 0
3ll paths from S +o t Change only By +(s)-B(+) 13| 2/ |43 ¢ (b)=-5

@ se+ &(v)= ssse
wew weight for

SSSP DISTANCE from ANY .. :

° - -‘ ¢[(\= ©

d&*(v) From Sowme Start node
i ® (a)z-t

(v.vy: Wiv.v) = Wlv,v) + & (V) - (S)

non-negq.

SUPERNOOE

+ 2dd supernode wl edaes +o 21l nodes. run BF from 4. O(VIIEI)

~once reweighted,

‘»O;:)
supe M
it o K TSI

FLLOYD- WARSHALL®

Dijksiras from every node. O(IVIIEL +IviZtogivi)
s ®2lNows For discomnected nodes +o be cale.
OUTPUT: Min distance from every UV
in graph (often represented

25 mMatriv)

o(1vi3) -Aepsp

‘OP 21g. Findling SP b/t 21l p2irS of vertices in weignred graplh

‘undicected 2 directed, handles neg. dge weights
-doesn't handie neg. cycles

-perform owne delere min for every node and one
decrease kéy for every edge

COMPACT BINARY TREE: a1 nodes as far Ief+ as possible
‘has 1:| correspondence wl array implémentation

@) w“ nodes . N .
'::3:1 % f:::r:\ xzs cwildren:
LLELL =2x
AR (6161c RIGHT(x) = 2x+1

PARENT(x) = [%_I
HEAPS: tompact binary +ree implementarion of PQ I.P. v

MAX HEAP PROPERTY: for xETree, X 2 l€F+(X), "?-"l'sl'ﬂ'l")
2 MIN HEAP: opposite (pParent= min €14.)

OPERATIONS: Einol: O(n) = no+ soried

*heapify-up(x): O(logn) =) swap x up tree while bigger than parent
sheapify.-doun(x): Oflogn) - Swap X down While Smalier +han childl

PG OPERATIONS (wi HEAP):

sinseri(x): Ollogn) put x @ end, heapify.up (x)

cdete+e.max(): Ollogn) SwapProot & 125+ &It in Brray, delete 1ast
heapify-down from roo+

sbuiloh: O(n) heapify every item down Stariing from leaves

S:x
HEAP SoRT: O(niogn) T.p: v
sbuild 2 heap (n=size of heap)
erepeatediy remove max eitr.

SORTING

<0 edges

—

BeLLMON - Foro: O(IVIIEl) + 8 - weight
c2ny SP +takes at most Ivi-l edges
rmake Ivl l1ayers & run DAG SP

to look 2+ I2st Iayer ostance <1ed
*‘how far we can get+ 2f+er # edaes” @j <1 edse
NEGATIVE CYCLE DETECTION: o
*B8F & 2dd avo+her I2yer ]57_ edge
* anything that has decr. a+ added

I2yer (S in negat+ive cycle. ¢can D Q

by tracing paren: pointers o \
*OFS 21l points reachable to cycies o 5 ]53 edge
& remove them. o

HANOLING NEGATIVE CvCLES:

1) computl SCCS & condensation graph O(Ivi+IEl)

2) within €2ch SCC in original graph, run BF +o Iearn
wWhich SCCs have wega+ive cycles. O(vi-I1El)

3) weigh condensation graph dges S.+. outgoing
edges from 23 wnega+ive cycie Scc have ueight -,
o.1. edges have weigwt 0.

4) get DAG APSP in condensation graph du(A.8)
-set du(A.A)=-) if A contains weg. cycie

S)ereare 6’ by rémoving 211 nega+ive SCCS

6) run Joknsons on 6’ o 9e+ d'’(u,.v)

7) 90 through every v,V I8t A,8 be +hein Sccs
i¢ du(A.8)¢O, J*(v,v)z -00
o0.w. HM(u.vIC ' (u.v)



REC+ PTSs:

5. Given an unweighted graph G =

apath from s to ¢ with the mlmmal number of red edges.

wrt. red edges while simultaneously condensing blue edges using DFS.

3. There are n lock boxes and m keys. Each box has a
exactly one box. There’s at least one copy of each box’s key, but for some boxes there may
be multiple copies of the key. Someone put all keys in the boxes and locked them up, but
luckily they made a note of which keys are stored in each box. Keys and boxes are numbered
5o that we know which box is opened by each key. Some boxes contain no keys while others 1fevery s-t pathis a shortest path (and i pasticula, if §(s, £) =

« Initialize a DEQUE Q = [s], d(s) = 0, and P(s) = L
« While Q is non-empty:
~ Remove the first element u from Q
~ For each unvisited out-neighbor v of u:
* set P(v) =u
* if (u,v) is red, set d(v) = d(u) + 1 and append v to Q
* if (u,v) is blue, instead set d(v) = d(u) and prepend v to Q
* Follow parent pointers from ¢ and output the resulting path

Correctness and runtime proofs are as DFS and BFS.

one al seven colors, and every vertex ha exacly one incdent edge o each color. Design an O(|V]log V)
Solution: We combine BFS and DFS. The main idea is that using a DEQUE, we can BFS algorithm
algc

(V. E) in which some edges are red and some are blue, find Pmblu‘n 4.[16 points] Prismatic Paths (1 part)

= (V. E,w) be a positive-weighted, undirected graph, and let s, € V.. Suppose each edge of G has

-t path
orithm’s runtime and briefly Jusnfy correctness.

edges of at least three dif yze y

be done with 27 states and a supersink) s+a¢e€ = (v, £R3), (V. §R.63), (v, i‘i)

v

1. Construct a directed graph G = (V/, B, /), where: O "B colors s

* For every vertex v € V/ and every color set  rlevant t0 o (described above),
vertex (v £2:0c¢eol (l\"|U|('))0'lhl(Zl\ 29
« For every (v, 5) in V' and every edge {u,v} € E of color ¢, B’ umm.m}m edge from (v, S
(4,5 U {c}) with the same weight as {u, v} 7 cmoose 2

2. Run Dijkstra from (s, 0) to (,+) and output ts projection onto G
(1) takes linear time, as G has 30|V'| vertices and 210|V| edges. (2) takes time O(|V'|log V| +
[) because G is sparse and has size O(|V]). Total is O(|V'|log |V']).

Problem 6. [18 points] Single Source Second-Shortest Paths (1 part)

istinct lock, so each key can open LetG =

second-shortest distance A(s, ¢) to be minimal such that:

© Als,t) > d(s,t)
+ A(s, ) is the length of some s-t path

REWEIGHT. DITKSTRAS

00), then A(s, £) = co. Design an algorithm

contain multiple keys. Boxes can also be forced open with a rusty crowbar. Design an (hattakes as input G and vertices s and £, and computes A(s, (). Analyze your algorithm’s runtime. For fll

algorithm to find the smallest set S of boxes that you need to force open in order to open all

the other boxes. [KS, C6 + INDEGREES | O (n+w)

Solution: Define a graph G = (V.

E,

the key to lock box v.

The key idea is that if there is a path @ — b — cin G, then opening box a gives us the key to
b, and opening box b gives us they key o c. So if we open a box, we get access to every box
reachable from it in G. As a consequence, opening a box allows us to open all other boxes

in its strongly connected component.

This last fact suggests we consider the condensation graph G-
component z of G is a source in G, meaning there are no edges into , then we must force
open some box in z. This gives as access to every box in z, as well as every box in every

SCC reachable (in G () from z.

After forcing open one box in every source SCC, we're done: if a vertex in G isn’t a source, Runtime: (1) takes O(|V'|og [V + |E|) time with Dijkstra. (2) taks
we can follow edges backwards until reaching a source, so every vertex is ‘downstream’ of (4 takes O(V]log V] + I

asource.

So this question is equivalent to finding the number of source SCCs in G

struct G, and then f h edge z — 7 k y as not . The vertices L " P
construct Gic, and then for each edge =  y in G we mark y as not a source. The vertices p o, 'y ness may be positive, but could also be be negative, e.g., when a road is difficult

that do not get marked are the sources. This takes O(n -+ m) time.

Solution:

such that there is a node in V' for each lock box and
there is a directed edge (u — v) € E between two lock boxes u and v if lock box u contains

If a strongly connected

To do this, we

credit, it should run in time O(|V|log |V| + | E|).

‘You need not prove correctness.

Hint: How can you track whether a path has deviated from all shortest paths?

Solution:

2. Reweight all edges using potential 3¢

4. Compute SSSP from 5o in G, denoted 85:(s

1. Compute SSSP in G from s, denoted 6¢:(s, )

3. Duplicate G to create graph G’ = (V', E) with two layers

« V' contains two copies g and vy of every vertex v € V
indicates that v has been reached via a shortest path

~ vy indicates that v has been reached via a non-shortest path
« Edges (u,v) € Eliftto B

= (o, v0) and (uy, vy) are always included

= (g, vy) is also included if (u, v) has positive weight

~), and output 8:(s, t) + dcr(s0,t1)
O(|E) time. (3) takes linear time.
time with Dijkstra, as G’ has 2|V/| vertices and at most 3| E| edges. Total is

O(|v|log|V| +|E|)

will bike to the meeting location from their home along dirt roads.
between intersections has a level of fun associated with biking along it in a certain direction.

Each road segment

to traverse in a given direction, or passes by a scary dog, etc.
1. Totodile has k PP to spend and wants to go to Tangelo Island. Design an O(|E|) time The children would like to maximize their total fun, which accumulates additively over the
algorithm to decide whether Totodile can reach Tangelo Islan{G Gy N OOES, BFS] road segments they individually bike over. Help the children plan their day by finding an

This reduces to SPSP by using a variant of graph duplication that subdivides optimal tee-ball location, or return a continuously-fun bike loop in their district, if one exists.

edges instead of duplicating the original vertices. We assume WLOG that G is connected; You may assume that each child can reach any road in the district by bike.

ofw we can prune unreachable vertices in O(|E|) time using ¢.g. DFS.

of ¢, However, after flying, Ducklett must rest and cannot fly again until after swimming
across another route. Design an O(k|E|) time algorithm to decide whether Ducklett can

+ Construct a graph G, by subdividing every edge {u, v} into a ¢, ,-edge chain of edges
if ¢,,, < k (instead remove the edge if ¢, , > k).

* BFS in G, from Shamouti Island to compute the distance d to Tangelo Island.

« Outputd < k.

seah Tamoco s, olkien

Solutior

duplication ideas. We construct a G with two vertices per island:

(a) vertex i corresponding to being at island i with Ducklett being rested
(b) vertex i corresponding to being at island i after flying

204
‘Then for each route {u, v}, add the following edges: d
r each route {u, v} wing edges: o) °_,.Orst-e
+ asingle directed edge from vertex u- to vs
o

+ asingle directed edge from vertex vr to us o

and if the cost of the route is at most k PP, we also add following additional edges:

+ ¢, -edge directed chain of edges from us to v
+ ¢,-edge directed chain of edges from vs to u;
+ cu-edge directed chain of edges from u to vy

+ ¢, -edge directed chain of edges from vr to ur

Solution: Construct a graph on road intersections within the district, as well as the locations
a, b, and ¢ of the homes of the three children, with a directed edge from one vertex to
another if there is a road between them traversable in that direction by bike. Weight the
edge by the negative fun-ness of the road. If a negative-weight cycle exists in this graph,
such a cycle would represent a continuously fun bike loop. To check for the existence of
any negative-weight cycle in the graph, run Bellman-Ford from vertex a. If Bellman-Ford
detects a negative-weight cycle by finding an edge (u,v) that can be relaxed in round [V,
2. Ducklett has k PP to spend and wants to go to Tarroco Island. Ducklett can either swim trace the parent pointers back from v, until a cycle is found, and return the roads in that cycle
across a route {u, v} by spending ¢, PP, or fly over a route by spending 1 PP, regardless as a continuously-fun bike loop.

ifno ight cycle exists, I-weighted paths to bike

routes that maximize fun. Our Bellman-Ford from vertex a thus computed shortest paths
5(a,v) from a to each vertex v in the graph. Run Bellman-Ford two more times, once

To solve this problem, we combine the ideas of the previous part with some graph from vertex b and once from vertex ¢, computing shortest paths values (b, v) and 8(c, v),

respectively, for each vertex v in the graph. Then for each vertex v, compute the sum

é(a,

v) + 8(b,v) + 6(c,v). A vertex that minimizes this sum will correspond to a road

intersection that maximizes total fun of all three children in reaching it.

This algorithm runs Bellman-Ford three times and then compares a constant-sized sum at
cach vertex, so this algorithm runs in O(|V|| E|) time.

e
(2b)e +o £ly) Problem 5. [30 points] Mod (2 parts)

GRAPH DUPLICATION (tomsST)

In each of the following, let G = (V, E) be an undirected graph with integer weights, and let 5, ¢ € V.. You

‘must

but you need not

ired
° (».-au S (o) (15 points] Give an O(|V|| ) time algorithm that outputs the smallest integer multiple of 6121 that

s the weight of some s-¢ path (or state that none exists). # look. @ iodes Haat react
Solution: remainderzo

N o oM b Qe be Ce.d

+ Create G' = (V! E'), where exi6 o'\ e

- V=V XZam 2 ar) ba

B = (e veraun) (wv) € Bz e Zom)  YNS 03\ 63 3

= w/(uz,v,) = w(u,v) d ‘e 2 \bw

s

* BFin G’ to compute and output 5(s0,0)  @hge$z waoed
Runtime: G is larger than G by a factor of 6121 (cofistant), so graph construction takes linear time,

 contains the

)t

(V, E, w) be a directed graph with non-negative edge weights. For vertices s,1 € V., define the -

informant. Mary has a map describing the length of each road and knows which roads have _

The number of edges and vertices in this graph is still ©(k| E|), so constructing this graph
takes ©(k|E) time. Then any sequence of routes from Shamouti Island to Tarroco Island
in this graph corresponds to visiting a sequence of islands without flying twice in a row. As
before, we can run BFS from Shamouti Island (starting from the vertex that is allowed to

fly to other islands) to find the distance d to Tarroco Island (cither vertex) in © (k| E]) time.
Ducklett can reach Tarroco Island iff d < .

3. CIA officer Mary Cathison needs to drive to meet with an informant across an unwelcome
city. Some roads in the city are equipped with government surveillance cameras, and Mary
will be detained if cameras from more than one road observe her car on the way to her

surveillance cameras. Help Mary find the shortest drive to reach her informant, being seen
by at most one surveillance camera along the way. KSTRA+ DUPLICATION|

Solution: Construct a graph having two vertices (v,

) and (v, 1)

or every road intersection

v within the city. Vertex (v,i) represents arriving at intersection v having already been

spotted by exactly i camera(s). For each road fro
edges from (u,0) to (v,

intersection u to v: add two directed
if traveling on the road will not be visible

0) and from (u, 1) to (v, 1)

by a camera; and add one directed edge from (u, 0) to (v, 1) if traveling on the road will be

visible.

If s is Mary’s start location and ¢ is the location of the informant, any path from

(5,0) to (£, 0) or (t, 1) in the constructed graph will be a path visible by at most one camera.
Let n be the number of road intersections and m be the number of roads in the network.
Assuming lengths of roads are positive, use Dijkstra’s algorithm to find the shortest such

path in O(m + n log n) time using a Fibona

i Heap for Dijkstra’s priority queue.

4. Ash is trying to cycle from Pallet Town to Viridian City without destroying Misty’s bike.
For every trail ¢ in the area, he knows the probability () of destroying the bike if he cycles
along e. Help Ash find the safest path to Viridian City (the path that minimizes his probabil-

ity of destroying the bike). Assume that all probabilities are independent and that arithmetic

operations take constant time. [ =TSy

Solution: Construct a graph having a vertex u for every trail intersection, and weight each

edge (trail) e with w(e)
min, +, 0, o0, respectively. If n is the number of intersections and m the number of trails in
the graph, then Dijkstra will take O(m + n log n) time using a Fibonacci Heap.

]

1—p(e). Run Dijkstra using (0, 1), max, X, 1,0 instead of [0, 0],

Problem 2. [15 points] Tricky Tolls (1 part)

A group of price-conscious MIT students is traveling from Syracuse to Toronto, and you wish to profit
Off of your fellow classmates. Your map shows that the students are considering traveling through i cities,

Hamilton and Burlington). You are allowed to set your toll price to be any positive integer you'd like.

s :
Design an efficient algorithm that returns cither the highest toll price you could set so that the MIT students  Noye: (1) is defined inductively by fO(v
will still choose to take your road, or state that no such toll exists. The students always pick the cheapest S y by 1)
route. In case of a tie, the students will pick the route that does not use your road. Analyze the runtime of
E0O!

‘your algorithm. You don't need to prove correctness.

Solution: Build the (unweighted, un

Here, §(s. #)

from ¢

Solution:

afier n
LetG =

m two-way road 1 except

ONE U
cted) graph G without your road. Output

5(s,h)
5(s,b)

a(b,t) —1

(st a(h,t) -1

BFS on G from s, and 8(e, ) can be computed using a BFS on G,

*8FS of G w/o road — &1 (s.+)

*BFSofG Wi road —dy(s.t)
Build the graph G without yourroad, and G with your r0ad. OUPU o g o _ oo
(how much we
c3n change)

an be computed usin

5(5,1) = (s, ) if it is positive, else

aBFS from s on G and on G
) be a directed graph. Say that vertices w, v € V' are semi-connected iff G contains cither a

v,

ww path o & v-u path (or both).

(@)

‘upper bounds below. Marl

112 points] Suppose G is acyclic. Describe an algorithm that finds and outputs a pair of vertices that
e not smi-conneted, o i o suchpalr exists. ity Jusiy corrctess. Pove one o e rntime
ke option by filling in

B Forup to 12 points, prove that your algorithm runs in O(|V| + | E|) time.
[ For up to 10 points, prove that your algorithm runs in O(|V/| log [V] + | ) time.
0 For up to 6 points, prove that your algorithm runs in O(|V'|| E]) time.

12pts
" TOPOLOGICAL SORT
1. Sort vertices

2. Output any two consecutive non-adjacent vertices, or

Solution:

if no such pair exists.
Runtime Analysis;

Step 1 takes O(|V| + | E]) time with Full DFS. Step 2 takes O(|V/])
Correctness:

Suppose t and v are output. Then there is no path of length < 1 between w and v by construction. Any
fonger path would have (0 pass through a vertex that is not between u and v in the topological order, so
would have an edge that violates the order.

is output. Then the topological order is a path of length n — 1, i.c. all vertices

time. Total is O(|V| + |EI).

Suppose instead that
are semi-connected.

BF runtime is still O(|V
Correctness (not required) follows from the 1-1 correspondence between s-v paths of weight z in G
and 50-Urem(z g121) Paths of length z in G,

E|). Total is O(|V|| E]).

Solution:
« DFS from s in G

€ETS:
Problem 1. [30 points] Liza Pover €= PSET )

Stata Center is a large labyrinth full of food protected by the CSAIL', LIDS?, and DLP®

The
research groups. Many brave the labyrinth in search of free food, but few escape.

a Pover is on a quest for free pizza.
consisting of a set L of locations (including rooms, hallways, staircases, and elevators) and a

D of doors that connect pairs of locations. Each door d = ({£1, £}, ¢) connects two locations £,
Solution:  We duplicate G 30 times to keep track of the colors seen so far along a path: the 29S¢t O at g4, and has a lock of type ¢ € {CSAIL, LIDS, DLP, MIT}. Anyone with a matching key can
mosttwo colors, plus a success state « that collapses ll setsof atleast hree colors. (Note: this could instead bu ('t door in either direction. For each key type f, Liza knows a set of locations L, C. L where
she can find a key of type £. She also knows a set of locations IT C L where she can find a pizza.

Liza is at an entrance location s and has an MIT key. Her goal is to find (at least) one pizza
then return to s (not necessarily by the same path) as quickly as possible.

(a) Describe a linear time algorithm to find a path that Liza can take from s 10 s that
collects at least one pizza and minimizes the number of times Liza must pass a door
(or L if no such path exiss). Briefly justify correctness, and analyze runtime.

Solution: While Liza explores Stata, the doors she can use depend on which keys she
has in her possession. It would be useful to know which keys she has while exploring
the building. There are 4 types of keys, but she will always possess an MIT key. Thus,
there are at most 2° possible sets of keys she could have at any given time, to account
for any subset of {CSAIL, LIDS, DLP} she could have. We will use graph duplication
to represent these 23 € O(1) possible states.
Construct a graph G = (V, E) as follows, O PHCATION+ 8Fs

+ For cach location ¢ € L, construct 2! vertices (£, p, ks, kus, koir) where p
and k, are Boolean, This represents Liza being in location ¢ with p pizzas, and k,
keys of type ¢ for cach ¢ € 7.

+ For cach door ({£1, 5}, 1), and each vertex v = (£1,, kesar, kups, koue) With
ke = 1, add a directed edge from v 10 (f2,/, kesaus ks, kbie). Where p/ =
PV (L e andk, =k, V (6 € L).

This graph exactly encodes all possible state transitions from any location in the Stata

Center while keeping track of the number of pizzas and key cards that Liza can be
holding. Thus a path from vertex u = (s,5 € 11,5 € Lesaw, s € Lips, s € Lpip) to
any vertex v € Q = {(5, 1, kesaw, kLs, kpLe)} represents a path that starts and ends
at s, while also procuring a pizza. Since Liza would like to minimize the number of,
doors she must cross, running BFS in G from u to each v € @ finds the minimun
doors crossed to each of them, so we can return a shortest path to any of them b:
traversing parent pointers back to the source.

Graph G has | L| -2* = O(|LL|) vertices and at most | D| -2¢ = O(|D|) edges, so canb:
constructed in O(|L| +| D)) time, and running BFS once from s also takes time linea
in th size o the graph, so ths algorithm runs in O(|L| + D) time. )

(b) Liza fails to acquire a pizza, but she does escape. She returns with k lock picks.
Liza can use a lock pick to open a locked door for which she doesn’t yet have the
correct key. This breaks the lock pick, and the door locks again behind her. Describe
an O(K|L| + k|D]) time algorithm to find a path that Liza can take from s to 5 that
collects at least one pizza and minimizes the number of times Liza must pass a door
(or L if no such path exists). Briefly justify correctness, and analyze runtime.
Solution: Modify the solution above to track the number of lock picks Liza has as
part of the state. [TRACK STATE

« Vertex setis V = L x {0,1}" x {0,1,2,....., k}, where the last component is the
number of remaining lock picks in Lizas possession.

« For each door ({£1, (2}, t), and each vertex v = (£1,p, kesaw, ks, koie, ) with
z > 0, add an edge from v to (£, p/, kissayr, Kps: kpup: @ — 1+ k) if it exists,
where g/ = pV (6 € 1) and k = k, V (€ € L,).
using a key if she has it, or failing that, a lock pick if she stil has one.

« Source is u = (5,5 € 11,5 € Lesan,s € Lups,s € Loup, k), and target set is
Q= {(s,1, kesaw, kuws, kpi

« Vertex set and edge set are larger by a factor of O(k), so runtime is increased by
afactor of O(k).

. This allows Liza to move to £

)}

Your advisor thinks that Course 19 is a waste of time, so demands that you take only
one class from Course 19 per semester. You would rather not pay tuition indefinitely,
so design a linear time algorithm that outputs a valid schedule of Course 19 classes
(with only one class per semester) that minimizes the number of semestrs you need
before taking 19.1434. Analyze its runtime, and briefly justify correctnes

Soluf Construct a graph G = (V, E), where V is the set of Course 19 class
and 5 contains an edge from 1 10 v iff  is a prerequisite for u. DFS from IHTFP,
and take all classes with finite finish times in increasing order of finish time (unless a
cycle is detected, in which case no schedule exists).

Runtime: Constructing G takes linear time by definition. DFS takes linear time.
Correctness: Reachable classes are the (dueu or indirect) premqulul:\ for IHTFP.
Gis the reverse prerequisite graph, so a t
DFS finishing order topo sorts in reverse.

(@)

(b) You ignore your advisor. Design a linear time algorithm that outputs a valid schedule
of Course 19 classes (with no limit on the number of classes each semester) that min-
imizes the number of semesters you need before taking 19.1434. Analyze its runtime,
and briefly justify correctness.

Solutios “tount levels of &

1. Construct G as before
2. Define a (partial) function f : [V| -+ N
3. For every class v in the order given by part (a)
« Set f(0) to be the max over all out-neighbors u of v of 1 + f(u)
« If v has no out-neighbors, set f(v) = 0
4. Output f, i.e. for every class v in the schedule, take v in semester f(v)

Runtime: Step 1 takes linear time, step 3 iterates over every vertex and every edge
once so takes linear time, and steps 2 and 4 take linear time for any reasonable imple-
mentation of f.

Correctness: We maintain the invariant that f is a valid schedule, and for every v for
which f(v) has been set, f(v) is the earliest semester in which v can be taken. This
is vacuously true at the start, At the iteration in which f(v) is set, we know from (a)

he has downloaded a map from |plans).mit.edu

« If t is not reachable, output co

« If any negative edge is reachable, output —

* Let G’ be as above, and use Dijkstra to compute and output 6(so, to)
Runtime: Graph construction is as above. DFS takes linear time. Dijkstra takes O(|V|log V| + | E|),
which dominates.
Correctness (not required) hinges on correctness of third step. Suppose G contains a negative edge
(u,v) reachable from s. be a path from u to t. Let k =
max(1, w(mm) , and (w~!)¥121 lifts to a negative
cycle through sg in G, and (77 ~)**% lifts to a path from s to to

Let

Problem 5. [12 points] The l.mmmst (2 parts)
Erik wants to deliver his lecture “Puzzling with Paper” in Tokyo. He has a list of n.cities he can potentially
travel to. There are m flights e cities, and a flight from city v to another city v costs py, dollars.
‘When Erik is in city v, he can earn r, dollars by delivering his lecture there. Al values of p,,, and r, are
‘non-negative. Erik cannot give two consecutive lectures in the same city. Assume that flights are expensive

enough that Erik cannot make an infinite amount of money.
(a) [9 points] Design an algorithm that finds a tour path from Boston to Tokyo that minimizes Erik's

()

e

net cost. Analyze your algorithm’s runtime. For full credit, your algorithm should be as efficient as

possible. You need weicnr, 8F]

Solution:

1. Create a graph G = (V, E):
« Vs the set of cities
+ E contains an cdge from u to v of weight py,o — v if there is a fight from uto v
2. B-F from Boston and output the SP to Tokyo
Runtime: Assuming all cities are represented as integers in the range [1, ], step (1) takes O(n
ime. Step (2) takes time O(nm), as G has n vertices and m edges. Total is O(m)
Note: assumption can be enforced in expected linear time with a hash table. As long as we use airport
codes (or at least avoid Bangkok),it’s probably safe to assume that the input sz is at most O(nim)

m)

Problem 3. Hide and Seek

Hoothoot and Skitty are playing Hide and Seek on a directed graph G = (V. E) in which every

vertex has a self-loop. At time 0, Hoothoot and Skitty start at vertices v;; and v respectively.
loothoot gets a head start of k moves. Hoothoot chooses a movement function f; C £, i.e. for

every vertex v, fy(v) is an out-neighbor of v. Skitty then (knowing fu) chooses a movement

function fs C E. Atevery time ¢ € N, Hoothoot moves to f}(vy). If t < k, then Skitty stays

atvs, and if t > k, then Skitty moves to f5 *(us). Skitty wins when the two Pokémon are at the

vand £ (v) = f(f1()).

(a) Hoothoot wants to evade Skitty for as long as possible. A naive attempt is to compute

the vertex  that is reachable from vy and as far from vs as possible, go to z, and
wait. Describe an example (G, vi, vs, k) for which this naive strategy does nof work.
Briefly justify your answer.
Solution: Let G be a bidirectional line of 4 vertices, let vy be the leftmost vertex,
and let vs be its neighbor. Then Hoothoot’s best strategy is to stay put (so that Skitty
wins at time k -+ 1), whereas the naive strategy causes Hoothoot to throw immediately
at time 1.
Help Hoothoot design a linear time algorithm to evade Skitty for as long as possible,
given G, vy, vs, and k as input. Your algorithm should output f; that maximizes the
time 7" such that Skitty cannot win before time 7" regardless of fs. Prove correctness.
You need not analyze runtime.
Solution:

1. Use BFS to compute SSSP from v in G; record these distances as s

2. Add k to all of the above distances except ds(vs)

3. Use a modified BFS to compute distances 6 from vy in G

« When relaxing an edge {a, b}, if 4 (a) + 1 > 8(b), disregard {a, b}
4. Find z with finite 6, (z) that maximizes 3s(z)
5. Hoothoot should take the shortest path to = as computed from §; and then wait

Correctness: By construction, Skitty cannot win before Hoothoot reaches v. Skitty
can reach v (and win) at time d5(z). This value is maximized by construction.

Help Skitty design a linear time algorithm to compute fs, given G, vy, vs, k, and
fu as input. Your algorithm should output fs that minimizes the time at which Skitty
wins, or output L if Skitty cannot win. Analyze your algorithm’s runtime and prove
correctness.

that if u is a prerequisite for v, then f(u) has already been set. By the invariant, v
cannot be taken at o before /(u) for any such u. However, f allows you to take all
prerequisites for v at or before semester max f (u), 50 v can be taken the following
() Help Skitty design a linear time algorithm to compute fs, given G, vy, vs, k. and
fur as input. Your algorithm should output fs that minimizes the time at which Skitty
wins, or output L if Skitty cannot win. Analyze your algorithm’s runtime and prove
correctness.
Hint: Q(k) is too slow, but Euclidean division is not!
Solution:
1. Compute Hoothoot's locations fl;(vy;) iteratively and store them in a DAA, up to
the first time he revisits a vertex. If the first duplicated vertex is reached at times

(a) Suppose Inteleon knows that the proximity fuses have range k, and he wants to com-
plete his mission as quickly as possible. Describe an O(n logn + m) algorithm to
find a shortest k-safe path, or output L if no such path exists. Briefly (2-3 sentences)
justify correctness. You need not analyze runtim

1. Create a weighted undirected graph G = (V, E), where V’ is the set of intersec-
tions, and  contains an edge {u, v} with weight ¢ iff there is a road of length £

between u and v.

Add a supersource u connected to each mine with an edge of weight 0.

Run Djikstra from u to find 6(u, v) for cach vertex v.

Delete any v where 5(u,v) < k.

Run Dijkstra from s to t and output the resul.

set

W

and

@

Correctness: Since u has distance 0 from every mine, each vertex s distance from u
is also its shortest distance from the closest mine. Deleting vertices that are too close
to mines leaves exactly the vertices that could be on k-safe paths.

(b) Suppose Inteleon does not know the range of the proximity fuses, so he prioritizes
safety over speed. Describe an O (nlogn + m) algorithm to find a shortest k-safe
path, where k is maximal such that a k-safe path exists. If no O-safe path exists, output
L. Briefly analyze runtime. You need not justify correctness.

Solution: c maximige min edge Safety
1. As above (0ij%k rmax-min)

As above + remove vertices with < k safety

As above

Reweight each edge {v,w} to min(8(x, v), 8(u, ).

Run Dijkstra from s using max-min metric to find & (s, v) for each vertex v.

Delete all vertices v with (s, v) < &'(s, 1),

Reweight back to original weights.

Run Dijkstra from s to t using the min-plus metric and output the result.

N uawe

»

Runtime: Creating G takes linear time, and the modifications don’t increase the size
of G by more than a constant factor. Dijkstra’s runtime is asymptotically unaffected,
_ sothe algorithm’s runtime is dominated by the first O(n log n + m) Dijkstra call.

Problem 1. Smell The Roses
Roselia is not impressed with the shortest path algorithms she is leaming in 6.1210. She would
like to find longest paths instead, so she can spend as long as possible enjoying the scencry on her
way to her destinations. There are 7 locations numbered 1 to n in Roselia’s garden, connected by
m_one-way trails of positive length. Roselia’s home is focated at location s. Give a linear time
algorithm (o find the lengths of the longest paths from Roselia’s home to each location in the
garden.
‘Note that the paths need not be simple. This means that for some destinations, the longest path may
have infinite length. In this case, you should still find the longest path for any destinations with
longest paths from s of finite length. For example, in the garden below, if s = 1, your algorithm
should still find longest paths from 1 to 6 and 7 even though nodes 2, 3, 4, 5 have infinite longest
paths. If the longest path to a node is infinite, your algorithm should retur oo for that node. If a
node is unreachable from s, you should return —cc. <find Fe2chBBIE

“tondense Sces

*OAG relax

(1) 3

J_(?/'/L\{' 2\_/ O

Solution: ~First, perform a DFS from s to get all nodes reachable from s. The longest path for
any non-reachable nodes is non-existent, so mark the longest path as —oo and remove these nodes
and their corresponding edges from the graph. Call G = (V, E) the remaining graph of nodes
reachable from s

When finding the longest path from s to t, if there is an SCC C' of size > 1 between s and ¢ such
that you can reach C' from s and you can reach ¢ from C, the max distance is infinite. This is
because we can just keep hopping from node to node within the SCC, continually increasing the
path length. Therefore, any node within an SCC of size > 1 or that is reachable from an SCC of
size > 1 has an infinite length longest path and should be removed from consideration.

In order to do this we use Kosaraju’s to find the SCCs in O(m+n). We then build the condensation
graph G = (V°, E) of SCCs, where each node corresponds to an SCC and edge (U,V) € B
only if there exists u € U,v € V' such that (w,v) € £. We connect a supernode S to all nodes
corresponding to SCCs of size > 1 and BFS (or DFS) from S in O(m + n) to find all reachable
SCCs. We then remove any node in a reachable SCC from G and mark the longest path to these
nodes as infinite. Call the remaining graph G’

Atthis point, the remaining graph G’ must be acyelic - any nodes that were in a cycle would have
been removed in the previous step. Thus, if we negate ll of the weights in G, run DAG relaxation
from s, and re-negate the answers, we will compute the longest path for any remaining nodes.
Bach step of this algorithm (DES, Kosaraju’s, DAG Relaxation) takes (. + ) time, so the total
time is O(m. + ).

Purrloin is exploring the Unova Region. There are n cities, and there are O(n) one-way roads
between pairs of cities along which Purrloin can travel. Every city can be reached from every other
city by traveling along roads.

‘Purrloin must pay c{u, v) coins to travel along the road between cities u and v. Note that this cost
may be positive (if there are tolls) or negative (if Purrloin can purloin’ enough coins to offset the
tolls). Some cities are designated as Pokémon Centers, and Purrloin is currently at the Nimbasa
City Pokémon Center. He must start each day at a Pokémon Center, and cannot lose (meaning net
loss) more than k coins in a single day. You may assume that Purrloin currently has arbitrarily
many coins but cannot pilfer’ infinitely many coins.

(@) Purrloin wants to explore as many cities as possible (possibly over many days) and
then end up back at the Nimbasa City Pokémon Center. Describe an O(n?logn)
algorithm to find all cities that Purrloin can explore. Briefly analyze its runtime and
justify correctness. [Sonmssng] scity is vawd €
Solution: mmm ALPC. x)+ (% PE) £ K

1. Create a graph G = (V, E): for PC reachalble

* V is the set of cilties. -~ N

« Eis the set of pairs (1, v) such that there is a road from 1 to .
2. Run Johnson’s on (G, ¢) to compute 5.
3. Creatc a graph G' = (V' E'):

* V7 is the set of cities designated as Pokémon Centers.

« For each pair of vertices (u,v) in V", E' contains edge (u,v) iff 6(u,v) < k.
4. Let S be the SCC of the Nimbasa City Pokémon Center in G'.
5. Purtloin can visit acity v iff min 0(s, v) + min (v, 5) < k.

Proof of correctness: (7 gives a natural correspondence hetween cities and vertices,
roads and edges, and costs and weights. G is a graph of Pokémon Centers, with edges
representing allowed paths that Purrloin can take in a day. S is then the set of all
Pokémon Centers where Purrloin can spend the night, while stil retaining the ability
to return to the Nimbasa City Pokémon Center at the end of a day. A city v can be
reached iff the shortest path between cities in ' through v has total cost at most .
“This shortest path is a concatenation of the shortest paths from S to v and from v to 5.

13, e find 1ocations up unti £ (vy). Hoot Hoot rePERNAg
2. Compute K := min(k, ty + rem(k — t1,1, — 1)) V@r#HE@S =C2n mod
3. Use BFS to compute SSSP from vs in G ASkithy WDIES Unkil -
4. Compute Hoothoot's locations up (0 time &'+ |V :‘o.ve:‘?:: are
5. Find the first ¢ such that ds(f} (vi)) + ¥ <t
6. Skitty should take the shortest path to f};(vy) (if one exists) and then wait

Runtime analysis

Step 1 takes O(n-+m) = O(n) time since m € O(n) as given by the
problem statement. G has n vertices and m edges, so step 2 takes O(n” log n+mn) =
O(n?logn) time. G' contains at most n vertices and at most n edges, so can be
constructed in O(n?) time. Step 4 takes O(n?) time with e.g. Kosaraju-Sharir. Step 5

1. Takes linear time by pigeonhole iterates over V x V", 5o takes O(n?) time. Total runtime is dominated by step 2, 50 is
2. Takes linear time with long division O(n*logn).

3 s linear time ) (b) Purrloin is now planning to pinch! something from Nuvema Town. Describe an O(n?)

4. near time by construction algorithm to find the cost of a cheapest path that Purrloin can take from the Nimbasa

5. This is a linear scan City Pokémon Center to Nuvema Town and back. Briefly analyze its runtime and
6. A function on |V takes linear time to output prove correctness. -

Hoothoot will repeat the loop from t, to 5 forever. Thus, if k > t, we,
may reduce £ modulo ¢, — f, to something in the range [¢1, £,) without changing the
outcome. We now assume WLOG k = K'. LHS of step 5 is the first time Skitty can
reach /,, (vi)- I the condition is satisfied, then Skitty can win at time ¢ using the g
rom . Otherwise, Skitty cannot win at time ¢. Finally, we observe that finite
distancesare bounded by [V, s0 Skitty can win by time k + [V if at all.
Problem 1. Magikarp Jump & PSET 2

is running a Magikarp Jump contest. In each round, all n Magikarps jump once, an East Coast. There are  cities along the coast, indexed 1,

Solution: 8F

1. Let G, G', and & be as above.

2,
Nimbasa City.

3. Reverse all edges and run Bellman-Ford again to compute all distances & to

Problem 3. [30 points] Holiday Migration (2 parts)
Delibird is on her annual holiday migration from Boston to Miami while delivering presents along the U.S.

m north to south. City 1 is Boston and

Maggie
cach jump helgh i recorded. At cach round, Maggie grabs a bag of beres, and allows i ity 7 is Miami. Delibird can ly south by at most  ciies o ime. This means i she’s n iy ,she can fly

highest-jumping Magikarps to choose one berry each, in decreasing order of jump height. o

city i+ jaslongas1<j < kandi+j <n.

Help Maggie find an algorithm that, given an array of n jump heights and the number k of berric Delibird starts in Boston with 0 presents. Whenever she leaves any city, she gives away half of her presents
in Magglc 's bag, outputs the order in which the highest-jumping Magikarps should choose the (rounded up). Whenever she arrives in city i, she acquires p; new presents. All p; are non-negative integers.
beri (a) [15 points] Design an O(nk) time DP to determine whether or not it is possible for Delibird to end her

(@) Prove that Magei’s task must ske (1 + Klog ) me in the comparison model

Solution: We condition on whether < h»w
« Case 1 (A <5 ") In this case, klogn < n, 50 (n + klogn) = Q(n). We

indeed require §2(n) time just to read the input and find the single best Magikarp.

trip (in Miami) with at least 12 presents. Correct O(n?) algorithms will be eligible for partial credit.

Run Bellman-Ford from Nimbasa City on (G', §) to compute all distances §' from

‘You must use one of the two subproblem definitions given below. Clearly indicate which subproblem

you use. Both definitions can lead to correct solutions.
B X(i) (where 1 < i < ) is the maximum number of presents Delibird can have after traveling
from city 1 toi.

W Y(i) (where 1 < i < n) is the minimum number of presents Delibird must have while in city i,

. Case2 (A > ) In this case, (n + klogn) = Q(klogn). Since log k so that after traveling from city i to n she will have at least 12 presents.
logn — loglogn € 2(log n), (klogn) € Q(klog k). Indeed, we must sort at Solution:
least  values, which requires (¥ log k) time by the lower bound from class. sx
(b) Describe an asymptotically optimal algorithm for this task, and analyze its runtime. R X() = max {|X(5)/2] +p: | max(L,i - k)
Solution: - Since we have lower bounded the complexity of this problem as 2(n + X i )
Klogn), it suffices to construct an algorithm and prove an O(n + k log n) time upper T Each X (i) depends on X (j) with j < i
bound. B X(1)=0

Agoitm Descripion

‘We build a min heap out of the input elements (4[], i), keyed lexicographically. Next,
we pop from this heap k times and put the removed indices (in order) into an output
array of size .
Runtime Analys
We learned in class that building the heap takes O(n) time, and that poy
heap takes O(logn) time. Since we build the heap once, and pop k
runtime is

ing from the
mes, the total

On+n+

klogn) = O(n + klogn)

Hint: (k) is too slow, but Euclidean division is not!
Solution:
1. Compute Hoothoot’s locations f} (vy;) iteratively and store them in a DAA, up to
the first time he revisits a vertex. If the first duplicated vertex is reached at times
t1, £z, we find locations up until £ (vy).

0 1[X(n) 2 12]
T There are O(n) subproblems, and each takes O(K) to evaluate by iterating over j, for a total of
O(nk) runtime.

OR
sY
RY()= max{u.mm{Z(Y(j) —p;) i< j < min(n,i+ k})}
T Each Y(i) dzpemi;/nn Y () with j > i
B Y(n)=12
0 1v(1) <0

T There are O(n) subproblems, and each takes O(K) to evaluate by iterating over j, for a total of
O(nk) runtime.
Note that the following relate statements are equivalent o the above solutions and would also earn full
credi

© XQ) = max (XG4 1S5 < ki=i21)

(0 = max {Omin (Y 6+~ i) | 1 <5 i+ <) |
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INTERFACES: £ 3 RECURRENCES: inductive sequewnce LOG PROPERTIES:

Y 5 VEVE: ble -en : - n x
StAck: LiIFo QUuEUE: FiIro DEQUE qzueue‘ SET: key-value pairs T(n):oT(b)"‘F(n) loa_ b= log, b
-PUSh(x) -enquelx) -puSh.front Fromil) ‘build %ab= log .o
-popl) -deque (x) - push.back A - §indlk) PLLG & CHUG: L
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\ 2 ewaining) " " " leg(ab) -Ileseu- logb
SEQUENCE: maintain order; * easy +o find by key T('l_.)= “(‘\T(?l) + ‘(?) + € log, b = log_lp
only have indices “ . i et o
Container | build (a) given an iterable 2, build sequence from items in & ) ) = a‘ T (ﬁ) *_n p w_closed DERI\VATIVES:
- e Container | build(a) given an iterable A, build sequence from items in A i simp1ify - i=a form d ( ) |
Satic | iter_se return the stored items onc-by-one in sequence order | 1enO) | return the number of stored items = ! _ ax (legox) =
. qe[,a[:;” m:um[hc ,.l.. imm‘u‘) 4 4 Static | £ind (k) | return the stored item with key k e+ K= l°55“ 2ud we know b¥zn A ks 'X na
set_at (i, x) replace the i® item with = Dynamic %) add x to set (replace item with key x.. key if one already exists) loaLn o\-n(l“ x) = 5
| index of(x) | retums the index i of item = | remove and return the item with key T(w)= a'°%" TO) +... a
e ] e (iF prove): (65 PLaY: = TINE - (mduetion) S (a%)= a*Ina
insert_first (x) | add z as the firsttem return the stored item with smallest key
del ete: first () remove and return the first item return the stored item with largest key
insert_last(x) |addz as the lastitem return the stored item with smallest key larger than
delete_last () remove and return the last item return the stored item with largest key smaller than k
IMPLEMEANTATIONS: LinkED LisT: Dymamic ARRAY: expandsishrinks HASHING: SUHA ,
DOUBLY LINKED: -pointer-based -@xPBnAS when deob:ng 2% clookup by key ;05?:" Plniki)zhiknew) 1= & (suha)
. c VI, next cwWhewn <Ny LItS, halve & move elits. . irwise indep. n
YAy nek  Limsiael in BL) -3va. 3 series of ExPENSIVE OPS. Over Lo o D w' Elzi+Pr = 45 = 14 €O
. . . cchainien O(e«+1) E~y
s is@mpty in O SerilS of cweap ownes o m LOAD FACT.®: 2va. # i+ems/siot ("Iw.}
top - good for ge+. atli)» O0) n= +otal items inserted
head ; mz 1en of array 01 23 . -t
[ efa]f TTT] L= buck et size a
: -COliSIONS A chBining =g
STABLE: preserve order: eits. wl = keys COMPARISON MODEL: (points +o DAA) om{E Tc
*binary comparisons
SORTIAIG: IN PLACE: no 2ddedmemory SZ (10 (n?)) € L2 (wiogn) RADIX SORT: B(cn), B(In+b)d) or O (niniog u)

*must be boundled . bz=#Hbuckets

INSERTION O (wn2)

SELECTION: O(n?)

c+uple Sort Wl gux.counting sort
<iF @very k@Y NS o (inear Olcw)
cwhole #s #d'gits=c

MERGE SORT: O(niogn) |O1vI0E & CONBUER: Ollogn)
buckets

‘Compdring SEAN  -Handpicking SEAN ‘Stable: prefer 186+ arn. | "base case: if ns ...
ESAN EANS 2615309 div.8 conq. | " 18+ m:=Lniz]
s:x EANs T ' ‘two finger"
AESN AENS 18 o03s ]
AENS AeNS L 2ens -eise, recurse on Al:m+1]

<if AlmI - -, recurse on Alm:] *if n words of 18n d in base b, ¢

each round O(n+b), total
rime B ((n+b)d)

o3serga I.P:X * Prove corvectness on IeP: X
T(n)z O+ 2T (n12) 8.C., both Sidles, no overiap - Sort LSBIMSE pseudopoiy!!
(720.355.436, U457, 657.324, 839)
5, . . . (720,329, 436,839,355, 457,657 )
DI1RECT-ACCESS ARRAY: B(u) COUNTING SORT: B(n+k) TuelLE SolT vSing d (329,355.436, 457, 657,720, 839 )
c2l keys distinct ‘keys dow+ have o be ‘need auxinary alge. Algorithm Time In-place? | Stable? | Comments
‘Uz possibie range . o distinct - have 2 " (n+n109,V) ¢countings. Insertion Sort o(n?) v v | O(nk) for k-proximate
o2+ ——5s ] sequence within 1 st “Hnear if logau €0 (1) Selection Sort 6(n?) v x| O(n) writes
01 23 44Ss 67 - use queue, Btc. for Stable (7. 3,24, 22.129[ (3.2), (.31, (4. 41, (4.2, (2.2)]  Merge Sort O(nlogn) x v | optimal comparison
[ ______ _] Sa+b (:'u ' (!!-l) l?‘.l) (.:-1.1 DAA Sort O(u) X N/A" | u is domain of possible keys
0123 4s6e7 e x (u.4) Counting Sort O(n + u) X v linear if u € ©(n)
Kz bucket Radix Sort log (¢ Tincar if o
n=ien.ave, L2700 psevdopolyt! adix Sor O(n + nlog, (u)) x v | linearifu € ©(n°)
BinARY TREE: - inah. 4o
“depth: & Bdges from node-yroot ° Perfectly balanced: T Full @ every level STRONG INO: We use Sir.ind. Show
- height:longest & edges +o (€2F N hz=Ollogwn) +hat Pln)=...
o A B
9 Iecb.réi‘are(u) O -skew(n): hin.right)-h(n.1ef+) BASE CASE: ng . explain why.
@ & ~ G Nk = 14+ N(h=1) +N(h-2) TNO. STEP: aSSUME 2lg. worksS fov
© @ ~—— ® @® SKeW=2: Np: Vo4 Vg +1 21U inputs £ Mn-1. WTS nworks
S & rignrrotatelt) &) @) p Nh> 20nn.3 (1ower boundl) typicaly pf. by cases
“n> 2(2vn-0) -
cin-order: L,N.R 9 SQUIRTLE s 2Wi3 T <YT(ni2) + O(n) azH4,6:2
cPre-order:N,L, R » UQSLRITE |O(n) heBlognu<3logn € O(iegn) Wi nl leg oz 2
AS
. 198 e > = ey #lev : -
Post-order: L, R,N > SQAITRELU MIle oS ive €vels: legyn flmr=otw)=olnt-E) v caset
AVL PROPERTY: VNET, ISkew(m)|€1 he Oliogn) % I.P. widn ¥ #nodes @ level i: ui
-3¢+ ; ; ; s Y
3+ mos+ 2 rot. +o.‘:a.vuolahon8 find (%)= O(h) . Work per node @ level i: O (,_: )
*AVL SEQUEenCE: MBiNntains order of el+s. inseri, del, Search ©3an 109, \
nooles contain: neghtisize of Subtree . Ted i, P2y togn ;_?t"_,
<AVL S@+: BST proplriy (compariSon moodl @) Ollogn) izo 2% sene =en2 Z 27722cn-n- 0O(n2)
is
AVGMENTATIONS: dlynamic oroler s+aks, computld pyiid O(nlogn) ) . . o
for nodes from i+seIF & 1.FH/rignt Problem 2. Nesting Y388 < 583
OROER-STATISTIC TREE: - LT, 2 Klefki wants to store a SET of locks. Each lock x has two keys: a comparable key ki(z) and a = o :3 g 3 ﬂ: q e
os.select(T.i), os.rank (T, x) hashable key k»(x). The ordered pair (k; (z), k2(x)) is a unique identifier, but neither key need in- ego2 ¥ faes
eT.Sizge = T.1eft.Size+ T.right.Size + | indexes - ] dividually be unique. Help Klefki implement a SET data structure in which the FIND and DELETE T E S 882%
*ith order: return €18ment w) ith Smanest key operations can take keys from either or both key spaces. (If FIND is given only one type of key, it B 2347 B % gz
s ; oY ) LS 28 § Sy
. 2 T— - can return any lock with that key. If DELETE is given only one type of key, it should delete every| L= 2 2 2 E @ %
rank: give Element I return posiéion: in ascenoling ord 30 Tock with the given key.) All three operations should run in O(log ) time. Analyzeﬂxerunlimeo_" e g 5 g3 5{3
.. : each, including classifying each as worst-case, amortized, and/or expected. Prove tighter bounds! = 25§ ~ 2 g o 8
INTERVAL TREES: interval-search (Tla,b1) @ when possible. [(OM PARA BLE / HASHA BLE |'€3¢h, 1o¢k Tives n - 2235 3 § ZHE2
- : : ;e ® g 8 3 =
° "':d “::: “:o.s interval intersects i iF exises @ Solution: Keep two nested data structures. Theﬂﬁ:san&L set A, keyed by k;. Elements A[k] = é -E g% = = 2
°T.low £ T. hig hash sets, keyed by kj, that store all the locks = with k1 (z) = k. The second is inside-out: a = Else I ov 8 <
o 1eF+ I T.lIeft m are hash sets, keyed by ks, 1(z) = Sz :
ckeued by max T.high I € T.le ax2za maxza  Wwaxs30 hash set H (keyed by k) of AVL sets (keyed by k;). - o:02 0 85823
: — 2 Eup
‘whilenode T doesn‘+ overiaw, traverse down tree. INSERT(z) adds z to both A[k:(x)] and H [ky(x)] (possibly after initializing empty sets if neces- = s3gs LT % 8
cif 16F+.MmIX 2 .0 9 Q0 1CFE. if I@F+- ML T. 0, SKip. sary). This uses both AVL and hash insertion operations, both on data structures of up to linear V5255 5 Y g ]
dei(3): Ol1og n) @sT: size. Runtime is hence expected and amortized O(logn). © oy g ’;?—_{g AR i
83k - et i i
47\, Find inorder successor JAistinct keys DELETE(k) if given two keys deletes A[k;][k.] and H [k,][k], which takes expected and amortized - i SE23 8 2 2 g
C}\‘ (08 podes val into del.node | oy keys ow 1ef+ subiree < node O(logn) time. If given only one, it either clears A[k;] or H|[k,], depending on which kind of TV EE, 2 Basi
L} e : " key is given. Each deleted lock then gives the second key necessary to delete from the other data Ql g P 53
-successor= IeF+ most cwitel v, & Y 1s g & Second key necessary . =8 0 E N o §d
L Yt e sovreee DN kEYS on right vaﬂ'::l’ node structure. Each lock deleted takes expected and amortized O(log ) time. We amortize this cost |:|° B igg <5%%
+US@S CompPaRiISOn MO over prior insertions (each deleted lock was inserted at least once). We are left with the top-level s s g Feg 4858
cinsifindldeld w.c O(n), heignt N w.e. FINDs, which cost O(logn) expected amortized time if given two keys, O(logn) amortized if 23 85F Sg&2
given only ky, or O(1) expected amortized if given only ;. |:|m ) $5 g E énm;
b Z H
FIND if given two keys simply looks for A[k;][k,]. I given only ks, it returns the root of H[ky], e G TET OSEL e
which takes expected O(1) time. If given only ki, it must return a representative from A[k:], I:l‘"’ Rl T g g‘
which (if maintained) takes O(logn) worst-case time. We can maintain this representative by o ® " Ne &2%E2

cross-linking each hash set in A with a linked list that maintains insertion order. Note: without
maintaining the representative, we can find an element in a hash table by probing randomly, giving
O(log n) expected time.



(b) Describe (with proof) an augmentation from which CLOSEST() can be computed in ¢ find_best (m): Find the highest rated player whose cost is between m/2 and ~ (b) Assuming unique node values, give a worst-case ©(n?) algorithm to determine Bul-
constant time. m (inclusive), or report that no such player exists basaur’s PreOrder traversal given Ivysaur’s InOrder and Venusaur’s PostOrder

Hint: Use an ordered triple that captures the difference between the examples you . . . . traversals of a tree 7. Prove your algorithm correct (and observe that it proves that
described above. closest = min + oife. blF 2 elés Allof insert, delete, and find best must still have O(logn) runtime. the PreOrder traversal is uniquely determined by the InOrder and PostOrder
. X A L X . X Hint: There are two very similar solutions to part (a), but one of them can be adapted traversals)._Analyze the runtime of your algorithm, including both upper and lower
Solution: In the given solution, the minimum value in the right subtree changed with-
. . N A much more naturally to solve part (b) as well. % k@€Y by coS+ bounds. | PREORDER ¢~ POST. IN
out changing any augmentation values. Generally, the closest pair can be in the left . . o - I
Solution: The first solution above can be adapted; the second should not. We keep Solution: We know that the root is always the last item in the PostOrder traver-

subtree, be in the right subtree, or contain the root value. In order to identify the last
case, we want to know the minimum and maximum values of each subtree. The triple
(min, CLOSEST, max) is a valid augmentation that can be maintained via:

sal. Next, we know that the InOrder traversal has the structure Left_SubTree,
Root, Right_SubTree, so we can search the InOrder for the root. We know
that the left subtree contains all nodes to the left of the root in the InOrder traversal

three augmentations: the best Elaxer in each subtree, the min key in each subtree, and
the max key in each subtree Both of insert and delete are unchanged. We adapt

B (T o . (T LFFT) TITEM find best: I AVGMENTAT 1onN/RANGE QUERY I and the right subtree contains all nodes to its right. sImilarly, all left nodes appear
min(T) = min(min(T.LEFT), T.ITEM) 1. If the tree is empty, the min key is greater than m, or the max key is less than before any of the right nodes in the PostOrder. So, once we find the index of the
max(T) = max(max(T.RIGHT), T.ITEM) m/2, then output | root in the InOrder traversal, we can also split at this index in the PostOrder to

CLOSEST(T LEFT) 2. If the min and max keys are both in the interval [m/2,m], then output the best have that split into left and right subtrees.
. CLOSEST(T.RIGHT i it i
CLOSEST(T) = min ( ) augmentation Once we have the traversals split into the two subtrees, we recurse and run the same

procedure again, first with the left subtree, and then with the right subtree.

|T.1TEM — max (T .LEFT)| 3
‘We then form the PreOrder traversal by placing first the root, then the PreOrder

N . If the root cost is greater than m, then recurse on the left
|T.ITEM — min(7T.RIGHT)|

Problem 2. [10 oints] Pidgey (1 par) 4. If the root cost is less than m /2, then recurse on the right of the left subtree and finally the Preorder of the right subtree.
y 5. Otherwise, recurse on both children, and output whichever of these two calls or Y s ini i i
Help Pidgey design an algorithm that takes as input an array A of n integers, and outputs a pair of indices . tp Corred.nuss: We are correctly obtvamm,jg the root node in each recursive call as the
the root player has the best rating. root node will always be the last item in the PostOrder traversal. We are also

i # j (if they exist) such that A[i] — A[j] is a multiple of [logn]. If there are many such pairs, you mav

output any one of them. Briefly justify correctness. Analyze the runtime, including proving matching uppe Correctness: Step 1 outputs L iff there are no costs in the range [m/2,m]. Step 2 .sp]ill.ing at the correct node to determine left and right subtrees since each node value

and lower asymptotic bounds. Classify the runtime as worst-case, expected, and/or amortized. executes iff all costs are in the range [m/2,m], in which case they are all eligible. 1 unique. )

Choose your own adventure: In this case, the best augmentation is the correct output by definition. Steps 3 and 4 Runtime: The worst case mrflime is O(n?) since each node wil'l b.e the root exactly
W For full credit, your algorithm must run in O(log n) time. execute iff the root is not eligible, in which case one subtree is also ineligible, and once, and each time a node is the root we have to search for it in the InOrder,
O For up to 5 points, your algorithm must run in O(n) time. recursion on the other subtree gives the correct output. Step 5 is a catch-all and is which takes at most O(n) time (_'he lengd h O_f the list Of_ nod.es we have to search

. . L : through). We are able to show this bound is tight by considering the case where the
Solntlnq:. Cre;te} a DAA .lhat stores % at loc.atlon rem(A[i], [logn]). Output the colhdmg »mdlAces. from th correct by casework on where the correct output is. Tnorder and PostOrder arc the same, making  tree that is a chain of Ioft children.
:::ﬁc::]z:;::im[z] to 7 using the hash function A(k) = rem(k; [log ). Output the colliding indices fror - Runtime: The steps are mutually exclusive. Steps 1-2 return immediately, and Steps This exhibits worst case behavior since each time we have to search for the root we

i o 3-4 make a single recursive call on a subtree. By the guards on the previous steps, Step must iterate through all of the remaining nodes in the traversal, giving a runtime of
Correctness follows from the definition of modular equivalence and the fact that rem(a, c) = rem(b, c) if 5 executes iff the root cost and at most one extremum are in the range [m/2, m]. This Z::ul(” —1) =6(n?).

a=b mode. means at least one of m/2 or m is strictly between the min and max keys. Suppose

Every insertion takes worst-case O(1) time because there is at most one collision by construction. B; Step 5 executes on two subtrees 7 and 75, neither of which is an ancestor of the other.  Problem 2. Rocket Recruits B8S. SORTING. RS
pigeonhole principle, the first collision is found within the first [logn] + 1 elements, so runtime is worst By the BST property, their least common ancestor has a key between them, so WLOG  Giovanni has recruited n new Grunts for Team Rocket. For each i € {0,
case O(logn). This bound is tight, witnessed by the input array [1,2, ... n], for which the collision betwee: we have min 7, < m/2 < Tj.root < maxT; < minTy < T.root < m < maxTy. k; Pokémon. All of the k; are positive and distinct.

n — 1}, Grunt i has

1and [logn] +1s found after log insertions. Therefore the right child of 71 and the left child of 7 both return immediately. This  Giovanni wants to pair them into teams with exactly p Pokémon between them. A pair of Grunts
(b) [16 points] Suppose instead that Riolu knows that there exists some o < n!21% such that her friend means there are at most four recursive calls at every level of the recursion tree, giving (=, y), with < y, such that k, + k, = p s called a battle pair.
can be partitioned into n o-pairs with one left over. Design a worst-case O(n) algorithm to find th: O (log n) runtime. Giovanni wants to find two quantities: the number B of battle pairs he can make, and the battle
unpaired Pokémon’s aura, given as input an array A of the 2n + 1 Pokémon’s auras. Note that o is pair (z*,y*) for which z* is minimal.'

unknown. Prove your algorithm correct, and analyze its runtime. You may assume a correct solution Problem3. LongJump [2 AVL TREES

to part (a), even if you did not solve it yourself. i . ) - . 3 . (a) Describe an algorithm to find B and (z*, y*) with a worst-case runtime of O(nlogn).
Choose your own adventure: RADIX SORT f{e:_ry is unsa:.lsfedl wn.ll]-l the cvurreml ll:').‘ng jump t1;|t1i1es axffhwa;ls t?u ﬁ\vi asﬂl.leltes p:zeslacc?rdll_:g Prove your algorithm correct, and analyze its runtime.
. : . 0 his own set of rules. He arrives at the competition with a ba of Snickers bars to give the
B For full credit, your algorithm must output the unpaired aura. P e e Solution: We present two solutions. The first is simpler, and uses binary search

O F to0 8 points algorithm need only decide wheth  the I " . ired. athletes. Whenever he’s feeling generous, he selects a minimum distance threshold ¢. An athlete is N . N N f . v . - .
‘or up to 8 points, your algorit need only decide whether or not the largest aura is unpaired. eligible to receive this prize if their most recent jump was at least distance . He gives the prize to to find a valid y‘lhat. pairs with each z after sorting the list of Pf)ke{non quantities.
The second solution improves on the binary search step, replacing it with a two-finger

Solution: We reduce to part (a). the eligible athlete who jumped most recently, or to Srini if no athlete is eligible. Athletes have no ¢ on e g . L8 two
L. If any aura s larger than w1210, et it Jimits o their number of attempts. algorithm to find all batle pairs in linear time. While the second algorithm is more
2. Radix sort A H i ada N he follow . efficient in practice, both have the same asymptotic runtime © (nlogn) due to the
g . enry needs a data structure that can support the following operations: i i .
3. Check if for every index i € [1,n], A[i] + A[—i] is the same (and < n'?'%); if so, return A[0]. ;omr;lg step befx;xlg the boAlLlenecl; wrecond battle pair” as i .
4. Repeat the previous step on the reverse of A. « JUMP(a, d): Record that an athlete with the name  just achieved a long jump distance of d or all parts of the question, we denote “record (z, y) as  batdle pair” as incrementing
5. Return the result of part (a), with & = A[0] + A[~1]. the running count B, and then updating the running optimum (z*,y*) « (z,y) if
T i 1210  PRIZE(t): Output the name of the prize winner, given distance threshold ¢ z <zt ciz [(9.0),(7.1), (1. 2),10,3)] (@.indl)
Proof ‘.)f correctness: Auras are pomuv:,.s.o every paired aura muft be ]css.than o<n . Hence Algorithm 1 (Sort + Binary Search): sortz L(1.2), (4.0, (7 0), (A.3)])
step 1 is correct or a no-op. We now condition on whether the unpaired aura is the smallest, largest, o1 Describe a data structure that uses O(n) space and implements both of the above operations in b.S. for ky=pP-kx
neither. O(log n) time, where n is the total number of athletes who have participated so far. Briefly justify 1. Initialize the running count B = 0 and running optimum (z*,y*) = (n,n).
« The smallest aura is unpaired. In this case, because A is sorted, A[i] and A[—i] must form a o-pair Correctness and analyze runtime. You do not need to prove space complexity or runtime lower 2. Keep track of the original indices of each element in {k;} before sorting. This
for every 4. This is detected by step 3. bounds. You need not analyze data structures or algorithms presented in class, but you must can bg done by creating a new sequence {c;}, and setting ¢; = (k;, i) for each
describe and analyze any modifications that you make. Assume that the JUMP operation is executed 0<i<n-—1.

* The largest aura is unpaired. This case is symmetric to the previous and is detected by step 4.

* The smallest and largest auras are both paired. In this case, they must be paired with each other,
so we know ¢ and can reduce to part (a). Solution: We store RECORDS as tuples (a, d), representing that the athlete with name a achieved

a jump of distance d.

at the time of the recorded jump, but Henry cannot tell what this time is.

w

. Sort {c;} by their Pokémon quantities (the first element k; of each tuple), using a
© (nlogn) sorting algorithm such as merge sort.

For each € [0,n — 1], binary search on {c;} to find a tuple (k,,y) with k, =
p — k. If there exists such a y, and = < y, record (z,y) as a battle pair.

. Return S and (2%, y").

>

Runtime analysis: Steps 1, 3, 4 are linear scans. If step 1 does not return, then auras are polynomial,
and step 2 takes linear time. Step 5 takes linear time by assumption. Total runtime is linear. ‘We keep two AVL trees:
Problem 4. [20 points] Happy Go Lucky (1 part)
Blissey’s Pokémon friends are at integer locations along a line. Blissey is keeping them happy by placing

Lucky Bggs. Bach Lucky Egg ¢ is represented as a pair of integers (a,b) with a < b, and it makes all in T subtree, comparing by distance. We compute this by comparing the root RECORD’S
Pokémon at locations z with a < z < b happy. Blissey’s friends may accidentally break the Lucky Eggs, . . . .

N . size with the augmentations of both children.
which then lose their effect. A i N N i DisTanc Any battle pair (z,y) must satisfy k, = p— ks, 50 when iterating through , the binary
Blissey would like to know who is happy. Design a data structure that supports the following operations: * In ATHLETES, we store a set mapping each athlete’s name a to the node in DISTANCES search will correctly find the unique y with Pokémon quantity p — k, and then record

[

* In DISTANCES, we store a SEQUE! of n+1 RECORDS, in order of time. Initially, the only
RECORD is (Srini, 00). We add the augmentation MAX(T'), which is the maximum RECORD

Proof of correctness. Itis easy to see that if we record exactly the set of all battle pairs
once each, the correctness of S and (z*,y*) follows naturally. We show that this is
indeed what we record in Step 4.

containing a record (a, d). DisT: ATHLETES: (,y). Likewise, we can show that any pair that’s not a battle pair will not be found

* PLACE(e): Add a Lucky Egg e to the data structure [ave 8sT, acem’] Overations are i das follows, M7 (se.00) e sr and recorded. Thus, we record all and only each battle pair exactly once.

* BREAK(e): Delete a Lucky Egg e from the data structure - & max(RIZE: M= ?A' 2 \*’\\n Problem 4. Find the MissingNo.

* HAPPY(z): it TRUE iff the Poké; t locati i tly h: . . 90 rigne

(w): Output TRUE iff the Pokémon at locarion = is currently happy Jume(a, d): prizele)=(b.7) M=y N (L.7) 6_’——\ b Given an array A of strictly increasing integers of length n, and a number s, your task is to design

Your data structure must use O(n) space, and all operations should have worst-case O (log n) runtime, where ~ Remove a from ATHLETES, and remove the removed node from DISTANCES an algorithm to find the smallest integer larger than or equal to s not in A.
n is the number of Lucky Eggs currently in existence. You need not prove runtime or correctness. — Add (a,d) to the end of DISTANCES, and in ATHLETES map a to the new node
Choose your own adventure: « PRIZE(t): (defined recursively and wrapped, starting with DISTANCES) (a) Design an algorithm to find the missing integer in time O(logn). You must describe

M For full credit, implement the operations as given above. your algorithm in English.

. 5 — If T"s right child augmentation is at least ¢, recurse on right
O For up to 10 points, assume that there exists d such that all Lucky Eggs have the form (a, a+ d). Your

Solution: 1 (Modification of binary search): We modify the comparison step. When

runtime and space requirements must not depend on d. - Elseif T’ root RECORD has distance at least ¢, output it Ais not empty, we find the index of the middle element ¢ and check if A[i] < s. If so,
- Els se on left ight si i i i
Solution:  Keep all Lucky Eggs in an AVL BST keyed lexicographically by either (a,b) or (a,—b): ) se .recuﬁe on lef » . ) we want to recurse on the right .slde of lh}: }1st. If not, we check if there aré consecmfnve
that is, they are primarily keyed b and if multiple eggs have the same a. ties a . Runtime analysis.We store two AVL trees of size n + 1, for a total of O(n) space. Augmentation numbers from s to Afi] by finding the difference between A[i] and s. Let’s call this k.
, they are primarily key y a, and if multiple eggs have the same a, ties are broken by some L . . . . . . N . N
N y N - runtime is immediate from definition. JUMPing performs at most four AVL insertions / deletions, Next, we check if Afi — k] s. If so, we know that there are consecutive numbers
ordering of b. Augment each node with the maximum b in each subtree, computed by node.mazb = . N . 5 . . .
X Ny each of which takes O(log n) time. PRIZE follows at most a path from the root of DISTANCES to from s to A[i, so we recurse on the right side of the list, setting s to A[i] + 1. If not,
max {node.item.b, node.le ft. mazb, node.right.mazb}. PLACE and BREAK are standard add and delete A . N X
a leaf, which takes O(log n) time. we recurse on the left side of A.

operations.
a (b) Prove your algorithm correct.

HAPPY(z): Recursively search from the root. At each node, if node is null, output FALSE. Otherwise: R . . L .
Solution: 1: We proceed by strong induction on 72. Our hypothesis is that our solution

1. If node.item.a > z, recurse on node.le ft and output its value. (The only eggs that can possibly have  pyy. o correctmess. DISTANCES stores every Athlete’s most recently jump attempt, plus a dummy finds the smallest integer larger than or equal to s not in A correctly. The base case is
a < z are all in the left subtree.) for Srini. We observe that WLOG these are the only jumps that have been attempted, as no others when n = 0. In this case, we have an empty array and therefore, we return s, which
2. Else, node.item.a < z: affect prize distribution. is the smallest integer larger than or equal to s not in A. For the inductive step, let’s

((;:; K "“;l"l”;'t”b 2 ;;Oulput‘TR‘L’Yll‘i‘.wE (Alleggs in the Left subizec have a < , and this condition  COTeEess of Max fon s i ate from definiti assume that our hypothesis holds for all arrays of size len(A) < n and let’s show that
node.left.mazb = z, outpul - (Alleggs in the lell sublrée have a = , and this condition X . . for arrays of size n the algorithm is still correct. There are three cases.
means at least one of them have b > z.) ‘When JUMP is called, the new RECORD is necessarily the most recent. It should therefore be added
(c) Otherwise, recurse on node.right and output its value. (The only eggs that can possibly have at the end of DISTANCES and replace any RECORD from the same Athlete. 1. The middle element is less than s: Since we have a strictly increasing array, any
b > z are all in the right subtree.) Correctness of PRIZE follows from induction and the traversal order of DISTANCES, noting that missing element in the list on the left side is smaller than s, which means that we
(b) Suppose instead that every Pokémon will train for more than one hour, i.e. b;—a; > 1. Srini ‘[Sl always llil‘g:rbele : ‘355““:;1‘"“ T C‘;l‘“a“:; an eligible Athlete and that PRIZE executes can disregard the left side. According to our algorithm, we’ll recurse on the right
B B . . . correc on smaller €s. We condition on where the Z€ winner 1s. . . . . .
(You may no longer assume that a; is an integer.) Give an O(n) time algorithm to Y prt side of the array, and as the right side of the array will have size less than n, our
solve the problem. You may assume a correct solution to part (a), even if you didn’t « If the athlete is in the right subtree, then they are also the last eligible Athlete in the right inductive hypothesis ensures that the algorithm will run correctly on this side.

manage to solve it yourself. ¢ _ .27, [2.4.5) subtree, so are found by the first recursive call.

1.2,4.8] dc.=2 - [r2
Solution: Reductionto (2) yse counting Sort owm o If they are at the root, then all Athletes later in traversal order, i.e. in the right subtree, are

~ight 8 1eF+ P ; } . . . .
. . ligible. The maximum size appearing in the right subtree is less than ¢, so the first recursive
; - such thz § réspectfully, el >

For every i, there is an integer ¢; such that a; < ¢; < b;. "‘e: merge’ call isn’t executed, and the oot is returned.

2. The middle element is larger than or equal to s and there is a consecutive sequence
of integers in the list from s to the middle element: The number we’re looking
for cannot be in the left side as we cannot have any gaps in our strictly increasing

2. Compute U{:n — ¢, — a;]} using part (a). unions « If they are in the left subtree, then they are the last eligible record in the left subtree. All array. Thereforel, we need to lf)ok for a missing elemeql in lpe right side of the
3. Replace each interval [z, y] in the union resulting from step 2 with [ — y, 7 — . Athletes later in traversal order, i.e. the root and everyone in the right subtree, are inligible.  atray. Our algorithm does precisely that, and since the right side of the array has
. . The else clause is executed, and recursion on the left finds the correct prize winner. size less than n, the algorithm will find the correct output based on our inductive
4. Compute U(V(',, b;]} using part (a). Problem 1. Counting Sheep hypothesis.
3 Merge the two lists into a single sorted list 5. Mareep is implementing a counter that stores a natural number k (initially 0) in base-n using an 3 The middle element is larger than s but there is not a consecutive sequence from
6. Iterate over S, merging each interval with the previous interval if they overlap. array A of length n. The counter has two operations: |, 2§@ s to the middle element: This means that there is a missing number on the left
7. Return S. * increment () : increments k by one OYNAMIC ARR side of the list that is larger than s. Thus, we should search in the left side, which
Proof of Correctness: We are computing the function f(Z) = 7, where Z and J are * get () : outputs and resets k POt _Fumc is what our algorithm does. Since the left side of the array has size less than n,
finite sets of intervals with the same union, and 7 is minimal. Because c; is defined as Describe how to implement both operations, and prove that they take amortized constant time. our algorothm will reach the correct output based on our inductive hypothesis.

an integer, we know that n — ¢; is also an integer, and step 2 correctly finds the union

of [ — ¢;, n — a] from the correctness proof of part (a). Solution: For increment, we start by incrementing A[0]. Each time A[i] overflows, we resetit 5. We saw how to create an iterator for an AVL tree in which the NEXT operation takes amor-

and increment Afi + 1]. If Afn — 1] overflows, double , reallocate A, and set Afn/2] = 1. tized constant time but worst-case logarithmic time. Describe how to change the AVL tree
For get, output A, reset n = 2, and reallocate A. such that this NEXT operation takes worst-case constant time. The functionality of the AVL
To analyze runtime, we want to figure out a good potential function. The first observation is that  tree (including asymptotic runtimes) should otherwise be unchanged| ER 0SS

To show that steps 2 and 3 correctly output the union of [a;, ¢;], we observe that both
steps apply the transformation g(Z) = {{n —z : z € I} : I € I}, which is self-

inverting and commutes with f. M t becomes expensive when n — 1 appears many times in A, but it also gets rid of AviscL

. . . . rneremen * - b § N i : Solution: Each node should additionally carry a pointer to its predecessor and successor.
Step 4 is correct because ¢; is an integer and thus correctness from part (a) applies. those appearances. Therefore these values should contribute o the potential. The second observa- g0 20 5 BP0 PO —linkei]l hz?zod:; as well as b‘i)na tree nodes. When we
The remaining steps are correct per the proof from (a). tion is that get must always use linear work, but this work cannot exceed the number of earlier Y Yy .

increments. We define ¢(A) = c(m + k), where ¢ is a constant and 1 is the number of indices  Gclete @ node from the binary tree, we can also have it delete itself from the linked list in the
i such that A[i] = n — 1. (Note that $(A) = c(2m + n) will also work.) usual way. For insertion, we observe that we can only ever add a leaf node, whose parent is
applied inductively. The work done for increment is O(m’ + 1), where m' is the length of the longest prefix of A either its successor or predecess.or,.The parent node can lhe.n add ,nlo the linked list in the
whose values are all 7, — 1. The potential increases by O(1) and decreases by (). By choosing U@l Way. This is called cross-linking the AVL tree with a linked list.
c to be sufficiently large, the potential decrease can be made to dominate the work done, so the  Alternatively, this will work with only a successor pointer and no predecessor pointer. We
e If ¢ < r then the two intervals are disjoint. Similarly, n — r < n — ¢ and amortized cost is O(1). use the binary tree FINDPREV operation and then update both nodes’ successor pointers.
n—r <n-pson—gn-—p),[n—smn—r]are also disjoint. On disjoint The work done for get is ©(n), and the potential decrease is 2, so there is no amortized cost. This takes O(log n) time, which is still dominated by the insertion or deletion runtime.

Aside: This level of detail is not needed, but for a full proof of (1), it suffices to show
that g(f(9({[p,q], [r,s]}))) = F({[p,ql,[r,s]}), for any p,q,r,s, as this can then be

‘WLOG, assume that p < r. Then, we have two cases:



