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Introduction to Algorithms: 6.1210
Massachusetts Institute of Technology
Brynmor Chapman, Srini Devadas, Henry Corrigan-Gibbs, Will Leiserson Recitation 1

Recitation 1

Lecture Summary

• Algorithms, correctness, and efficiency

• Preschool versus grade school algorithms for addition

• Grade school versus Karatsuba’s algorithms for multiplication

Exercises: Review of big-O, Karatsuba’s Algorithm

1. Getting a feel for common recurrences:

(a) Prove that T (n)  T (n/2) + O(n) is solved by T (n) = O(n), using the following
steps. (i) Draw a recurrence tree representing this recurrence relation. Analyze the
total amount contribution at each level and the number of levels of the tree (depth). (ii)
Prove that the sum

P
`depth (total from level `) = O(n), substituting the expression

you got in part (i) for “total from level `”. (iii) Check the correctness of your solution
using the Master Theorem.

(b) The runtime of the optimal sorting algorithm mergesort (covered later in the course)
satisfies the recurrence T (n)  2T (n/2) + O(n) on lists of size n. Perform the same
analysis as in part (a) for this recurrence. Optionally, solve the recurrence using the
substitution method.

(c) Recall from lecture that the naive divide-and-conquer algorithm for multiplication sat-
isfies the recurrence T (n)  4T (n/2)+O(n). Perform the same analysis as in part (a)
for this recurrence.

2. See the lecture 1 notes for the definition of Karatsuba’s algorithm. Recall that the number
of basic operations it uses to multiply two n-digit numbers, T (n), follows the recurrence
relation T (n) = 3T (n/2) + Cn, for some constant C. Use the recursion tree method to
prove that T (n) = O(nlog2 3).

3. In this class we will frequently prove correctness of algorithms via induction. Early in the
course, these proofs might seem unnecessary, because we will start by studying (relatively)
simple algorithms whose correctness is easy to see. However, it is important to get practice
with these inductive correctness proofs, because, as the course progresses, we will see more
and more sophisticated algorithms, whose correctness is far from obvious. We will convince
ourselves of their correctness via proofs.
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Recitation 1 2

With this in mind, prove by induction on n that Karatsuba’s algorithm run on two n-digit
integers x, y always returns x · y. The proof is relatively straightforward, but has a tricky
case which needs to be handled carefully.

• We ignored the base case of the recursion when discussing Karatsuba’s algorithm in
class. Describe how the algorithm might handle this base case. For this analysis, feel
free to modify the algorithm by choosing the size of the base case to be any constant.

• Your proof should have a base case and an inductive case, corresponding to the recur-
sive and base cases of Karatsuba’s algorithm.

4. (optional) Toom-Cook multiplication is a generalization of the Karatsuba algorithm for mul-
tiplication, which can achieve even better asymptotic results. The runtime for Toom-Cook
multiplication satisfies T (n) = (2k � 1)T (n/k) + O(n), where k is a positive integer pa-
rameter of the algorithm (Karatsuba multiplication corresponds to k = 2). Use a recurrence
tree to solve for the asymptotic runtime of Toom-Cook multiplication. Your answer should
involve k as a parameter.
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Brynmor Chapman, Srini Devadas, Henry Corrigan-Gibbs, Will Leiserson Recitation 2

Recitation 2

Lecture Summary
• Algorithms

• Efficiency and Worst-Case Analysis

• Model of Computation

• Peak Finding and Binary Search

Exercises: Algorithms, efficiency and worst-case analysis
Problem: Given the students in your recitation, return either the names of two students
who share the same birthday and year, or state that no such pair exists.

Algorithm: Choose one student at a time and ask for their birthday. Then ask everyone
else in the room whether they have the same birthday, and if a match is found, return it.
Otherwise, send the chosen student out of the room, and run the same algorithm on the
remaining students. If there are no more students in the room, return None.

1. Prove that the birthday algorithm is correct by induction.

2. Provide an upper bound on the worst-case runtime for the birthday algorithm. Use the im-
plementation below as a guide:

1 def birthday_match(students):

2 ’’’

3 Find a pair of students with the same birthday

4 Input: list of student (name, bday) tuples such as

5 (("a", "8-28-1999"), ("b", "10-25-2003"))

6 Output: tuple of student names or None

7 ’’’

8 # Base case

9 if len(students) == 0:

10 return None

11 (name1, bday1) = students[0]

12 for i in range(1,len(students)):

13 # Check if students are the same

14 (name2, bday2) = students[i]

15 if bday1 == bday2:

16 return (name1, name2)

17 return birthday_match(students[1:])
















































































































i

n

i

n




















































































































Recitation 2 2

3. Provide a lower bound on the worst-case runtime for the birthday algorithm.

Exercises: Binary search

4. Binary search is an efficient algorithm for finding an element in a sorted array. Consider
an array with n unique numbers that has been sorted in ascending order and then rotated an
unknown number of positions k such that the index of each number in terms of its original
index i is i+ k mod n.

E.g. below is an example rotated array of length 11 which is rotated k = 6 positions, com-
pared to the original sorted array.

Index: 0 1 2 3 4 5 6 7 8 9 10

rotated array: [ 7, 8, 10, 12, 13, 15, 1, 2, 3, 4, 6 ]

k = 6

sorted array: [ 1, 2, 3, 4, 6, 7, 8, 10, 13, 13, 15 ]

(a) Design an O(log n) algorithm to find the value of k. Don’t forget to prove correctness
and argue runtime.

(b) Design an O(log n) algorithm to determine if a number x is in the array. Again, re-
member to prove correctness and argue runtime.

5. Given a positive integer n, return
⌅p

n
⇧
. The algorithm should run in time O(log n).

6. Given a monotone function f : Z ! {�1, 0, 1} with exactly one root ↵, find ↵. The
algorithm should run in time O(log |↵|). (Assume that f can be evaluated in constant time).
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Recitation 3

Lecture Summary
• Data structures, interfaces and implementation

• Amortization

• SEQUENCE interface

• Implementations of the SEQUENCE interface: linked list, dynamic array

Exercises
1. Given a implementation of the STACK interface which takes O(1) amortized time for each

operation, show how to use it to implement the QUEUE interface, and analyze your imple-
mentation’s runtime.

2. Modify the Dynamic Array implementation of the SEQUENCE interface such that the opera-
tions insert first and delete first take O(1) amortized time alongside insert last
and delete last.

3. Suppose the next pointer of the last node of a linked list points to an earlier node in the list,
creating a cycle. Given a pointer to the head of the list (without knowing its size), describe a
linear-time algorithm to find the number of nodes in the cycle. Can you do this while using
only constant additional space outside of the original linked list?

4. (Optional, hard) Suppose you have an implementation of the QUEUE interface which takes
O(1) amortized time for each operation. Show how to use it to implement the STACK inter-
face using only black-box access to a single QUEUE and constant extra space. (Black-box
means that you are only able to interact with the QUEUE using the QUEUE interface.) What
are the best possible amortized runtimes you can achieve for the STACK operations?
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Recitation 4

Lecture Summary
• Incremental algorithms, e.g. insertion sort, selection sort

• Sorting (stable, in-place)

• Divide and conquer, e.g. merge sort, 2D peak finding

Exercises
1. Describe how to use a sorted array to implement the Set interface. What is the runtime of

each operation? (You can assume there is already plenty of space allocated for the array.)

2. Describe how to use a sorted doubly linked list to implement the Set interface. What is the

runtime of each operation?

3. In a train station, trains come at certain arrival times and leave at certain departure times.

Given the sorted list of all arrival times and the sorted list of all departure times, what’s the

minimum number of platforms the station needs to accommodate all the trains? Give an

algorithm and analyze it. Assume there are 0 trains in the station to begin with.

Divide and Conquer

Inversion Counting
We will see how to solve this problem using the divide and conquer approach: Given an array,

count the number of inversions in it. Two elements a[i] and a[j] form an inversion if a[i] >
a[j] but i < j. The inversion count of an array gives an idea of how sorted it is.

4. What is the brute force algorithm for solving this problem? What is its running time?

5. Find and analyze a more efficient algorithm for the inversion count problem.
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Recitation 5-6

Lecture Summary

L05

• Comparison Model and Lower Bound

• Direct Access Array Sort

• Counting Sort

• Tuple Sort

• Radix Sort 1

L06

• Comparison Find Lower Bound

• DAA Sets

• Hashing + hash functions

• Collisions and chaining

DUPLICATES

Given an unsorted array A = [a0, . . . , an�1] containing n positive integers, the DUPLICATES prob-
lem asks whether there is an integer that appears more than once in A (the answer is ‘yes’ or ‘no’;
you don’t need to return the repeated integer). All of the questions in this section should have 1-3
sentence answers.

1. Describe a (very simple) worst-case O(n2)-time algorithm to solve DUPLICATES.

2. Describe a worst-case O(n log n)-time algorithm to solve DUPLICATES.

3. Describe an expected O(n)-time algorithm to solve DUPLICATES.

4. If k < n and ai  k for all i, describe a worst-case O(1)-time algorithm to solve DUPLI-
CATES.

5. If n  k and ai  k for all i, describe a worst-case O(k)-time algorithm to solve DUPLI-
CATES.

1CoffeeScript Counting/Radix sort visualizer: https://codepen.io/mit6006/pen/LgZgrd



































































































































































































































Recitation 5-6 2

Linear Sort

1. True or False: There exists a comparison sorting algorithm that sorts 5 numbers and uses at
most 6 comparisons in the worst case.

2. Sort the following integers using a base-10 radix sort.

(329, 457, 657, 839, 436, 720, 355) �! (329, 355, 436, 457, 657, 720, 839)

3. Describe a linear time algorithm to sort a set n of strings, each having k English characters.

4. Describe a linear time algorithm to sort n integers from the range [�n
49
, . . . , n

50].

5. (Optional) You are tasked with writing a pest buddy app, and you initial idea is to take a
list of kerbs as input, and find all similar kerb pairs from the list and group students up that
way. We define two kerbs to be similar if they differ by exactly one character. Assume each
student has an 8 character long kerberos and no two kerbs are the identical. You want to test
your idea and decide to first design an algorithm that counts the number of all similar kerb
pairs. Design an algorithm that counts the similar kerb pairs in linear time.

Hashing tuples

The hash functions we’ve discussed only process a single machine word. What if we want to hash
something much bigger, like an entire file?

Let’s hash tuples of integers of the form (a1, . . . , at). For this section, assume that, for any prime
m, you have a hash function h which sends a tuple of t integers to a hash in {0, . . . ,m � 1}, and
can be computed in O(t) time. Furthermore, assume that h comes from a distribution that satisfies
the Simple Uniform Hashing Assumption.2

Given a list of bad tuples [v1, . . . , vn], we want to construct a data structure that supports the
following operation: given a new tuple v, check whether v is identical to any bad vi. The time of
this operation and the space occupied by the data structure should be as small as possible.

It’s okay if an innocuous tuple is ocassionally flagged as bad, as long as this happens with proba-
bility at most 1% for each tuple that isn’t in the list.

Design:

1. an O(tn)-time preprocessing algorithm which takes [v1, . . . , vn] and builds a data structure
that takes space O(n).

2. a lookup operation which takes a tuple v and uses the preprocessed data structure to deter-
mine whether v 2 [v1, . . . , vn] in time O(t) and with false-positive probability at most 1%
(and no false negatives).

2You don’t need to figure out how to achieve this, but in case you’re curious, the key idea is to compute a rolling
hash: first compute h1 = h(a1), then (abusing notation a bit) h2 = h(h1, a2), then h3 = h(h2, a3), and so on. This
makes t calls to the basic hash function h.
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Recitation 7

Lecture Summary
• Binary Trees1

• Binary Search Trees Operations (find, insert, delete, successor)

Exercises
1. Give the in-order, pre-order, and post-order traversal orders for the following binary tree:

A

B

D E

H I

C

F G

2. Practice with the BST implementation of the SET interface by inserting some items of your
choice into a small BST, and then searching for and/or deleting some keys.

3. What order would we insert the elements 1, 2, 3, 4, 5, 6, 7 into a BST so that the height
of the resulting binary tree is maximized? How would we insert them so that the height is
minimized?

4. Prove that an in-order traversal of a BST yields a sorted array.

5. Given an array of items A = (a0, . . . , an�1), describe an O(n log n)-time algorithm to con-
struct a binary search tree T containing the items in A such that T has height O(log n). You
may assume n is one less than a power of two.

6. Let x and y be nodes in a BST, and suppose y is the successor of x and x has no right child.
Prove that y is an ancestor of x, and in particular x is in the left subtree of y.

7. Argue that the following iterative procedure to return the nodes of a tree in traversal order
takes O(n) time.

1Visualizer found at https://github.com/edemaine/poketree


















































































































Recitation 7 2

1 def tree_iter(T):

2 node = T.subtree_first()

3 while node:

4 yield node

5 node = node.successor()



































































































































































































































Recitation 7 3

Appendix A: Binary Node and Binary Tree Implementation

1 class Binary_Node:

2 def __init__(A, x): # O(1)

3 A.item = x

4 A.left = None

5 A.right = None

6 A.parent = None

7 # A.subtree_update() # wait for R08!

8

9 def subtree_iter(A): # O(n)

10 if A.left: yield from A.left.subtree_iter()

11 yield A

12 if A.right: yield from A.right.subtree_iter()

13

14 def subtree_first(A): # O(h)

15 if A.left: return A.left.subtree_first()

16 else: return A

17

18 def subtree_last(A): # O(h)

19 if A.right: return A.right.subtree_last()

20 else: return A

21

22 def successor(A): # O(h)

23 if A.right: return A.right.subtree_first()

24 while A.parent and (A is A.parent.right):

25 A = A.parent

26 return A.parent

27

28 def predecessor(A): # O(h)

29 if A.left: return A.left.subtree_last()

30 while A.parent and (A is A.parent.left):

31 A = A.parent

32 return A.parent

33

34 def subtree_insert_before(A, B): # O(h)

35 if A.left:

36 A = A.left.subtree_last()

37 A.right, B.parent = B, A

38 else:

39 A.left, B.parent = B, A

40 # A.maintain() # wait for R08!

41

42 def subtree_insert_after(A, B): # O(h)

43 if A.right:

44 A = A.right.subtree_first()

45 A.left, B.parent = B, A

46 else:

47 A.right, B.parent = B, A

48 # A.maintain() # wait for R08!


















































































































Recitation 7 4

49

50 def subtree_delete(A): # O(h)

51 if A.left or A.right:

52 if A.left: B = A.predecessor()

53 else: B = A.successor()

54 A.item, B.item = B.item, A.item

55 return B.subtree_delete()

56 if A.parent:

57 if A.parent.left is A: A.parent.left = None

58 else: A.parent.right = None

59 # A.parent.maintain() # wait for R08!

60 return A
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Recitation 8

Lecture Summary
• Balanced Binary Trees

Exercises
1. What does this AVL binary search tree look like after inserting 18?

10

5 15

16

2. What does this AVL tree look like after deleting 12?

3

17

12

4

5

42 9

10

3. When we rotate a tree, right or left, the in-order traversal remains the same. Do the pre-order

and post-order traversals remain the same?

4. We’ve defined the AVL Property in terms of skew. Specifically, a tree has the AVL Property

if every node, n, in it has |skew(n)|  1. An AVL Tree can reach any of the leaves from the

root in O(logn) time. Imagine an AVL-2 Tree that allows a skew of up to two. I.e., it only

guarantees |skew(n)|  2. Show that the height of such a tree is still in O(logn).

5. We saw how to create an iterator for an AVL tree in which the NEXT operation takes amor-

tized constant time but worst-case logarithmic time. Describe how to change the AVL tree

such that this NEXT operation takes worst-case constant time. The functionality of the AVL

tree (including asymptotic runtimes) should otherwise be unchanged.
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6. Suppose you have some items x, each of which has one comparable key k1(x) and one

hashable key k2(x). Assume that both keys are unique. Describe an unordered SET data

structure that can INSERT efficiently and can FIND or DELETE efficiently using either key.

What is the runtime of each operation, and is it worst-case, amortized, and/or expected?
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Recitation 9

Lecture Summary

• Order Statistics

• Augmentations

• Interval Trees

Exercises

1. Suppose you want a data structure that maintains a SET of integers, with the additional
operation CLOSEST(), which should in constant time return the minimum positive difference
between two elements of your SET.

(a) Clearly CLOSEST() cannot be computed from scratch in constant time. A natural strat-
egy to attempt in such a situation is to make it an augmentation. Explain why CLOS-
EST() cannot be an augmentation.

(b) Describe (with proof) an augmentation from which CLOSEST() can be computed in
constant time.
Hint: Use an ordered triple that captures the difference between the examples you
described above.

2. Augmenting a binary tree can be useful if the items being stored need to support queries
based on two different data. The choice of key and augmentation need not be unique. Of-
ten there are dual representations in which the rôles of key and augmentation are swapped.
Describe (with proof) an interval tree in which the interval [a, b] is keyed by b instead of a.

3. Which of the following proposed augmentations for a binary search tree would work? For
each one, either (briefly) describe how to efficiently compute the augmentation at v from
the augmentation at its children, or explain why this is impossible. Assume the BST has no
other augmentations.

• f1(v) = the median of the keys in the subtree rooted at v

• f2(v) = the three biggest values in the subtree rooted at v

• f3(v) = the number of odd values in the subtree rooted at v

• f4(v) = the height of the left subtree under v (i.e. the subtree rooted at the left child
of v)
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4. Describe a data structure that maintains a sequence of n bits and supports two operations,
each in O(log n) time:

• flip(i): flip the bit at index i

• ones upto(i): return the number of bits in the prefix up to index i that are one
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Recitation 10

Lecture Summary

• Graphs and representations

• Graph Problems

• Breadth First Search

• Depth First Search

Exercises

1. Write the adjacency list and adjacency matrix representations for the graph below.

01

2

3

4

2. Given a directed graph G, construct and analyze the runtime of an algorithm to create graph

GR
which is identical to G but with all the edges reversed. Solve for both an adjacency list

and adjacency matrix representation.

3. Describe how to implement BFS using a QUEUE as the main data structure. Remember that

a QUEUE supports the enqueue and dequeue operations.

4. Describe how to implement DFS using a STACK as the main data structure. Remember that

a STACK supports the push and pop operations.

5. Given an unweighted graph G = (V,E) in which some edges are red and some are blue, find

a path from s to t with the minimal number of red edges.
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Recitation 11

Lecture Summary
• Connectivity

• Strong connectivity

• Kosaraju-Sharir

Exercises
1. Design an algorithm to build the condensation graph GC = (VC , EC) of G = (V,E).

2. Cycle Detection

(a) Prove that GC
⇠= G iff G is acyclic.

(b) Explain how to detect a cycle in a directed graph in linear time.

(c) Explain how to detect a cycle in a directed graph using only a single Full-DFS.

3. There are n lock boxes and m keys. Each box has a distinct lock, so each key can open

exactly one box. There’s at least one copy of each box’s key, but for some boxes there may

be multiple copies of the key. Someone put all keys in the boxes and locked them up, but

luckily they made a note of which keys are stored in each box. Keys and boxes are numbered

so that we know which box is opened by each key. Some boxes contain no keys while others

contain multiple keys. Boxes can also be forced open with a rusty crowbar. Design an

algorithm to find the smallest set S of boxes that you need to force open in order to open all

the other boxes.
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Recitation 12

Lecture Summary

• Reduction

• Turing / many-one reductions

• Graph duplication

• Self-reduction

Exercises: Ash’s Archipelago Adventure

Ash and his Pokémon are on vacation in the Orange Islands, represented as an undirected graph
G = (V,E). Each vertex is an island, and each edge is a route that can be traversed in either
direction. Each route {u, v} costs a given positive integer number cu,v of Power Points (PP) to
navigate. Everyone is currently on Shamouti Island, and some of Ash’s Pokémon want to go to
different islands. Help Ash’s Pokémon reach their desired destinations.

1. Totodile has k PP to spend and wants to go to Tangelo Island. Design an O(k|E|) time
algorithm to decide whether Totodile can reach Tangelo Island.

2. Ducklett has k PP to spend and wants to go to Tarroco Island. Ducklett can either swim
across a route {u, v} by spending cu,v PP, or fly over a route by spending 1 PP, regardless
of cu,v. However, after flying, Ducklett must rest and cannot fly again until after swimming
across another route. Design an O(k|E|) time algorithm to decide whether Ducklett can
reach Tarroco Island.

3. Squirtle and Fletchling want to go to Trovita Island and can each spend at most k PP. Squirtle
can swim (and carry Fletchling) across a route {u, v} by spending cu,v PP. Fletchling can fly
(and carry Squirtle) over a route {u, v} by spending 5 PP, regardless of cu,v. However, after
flying, Fletchling must rest and cannot fly again until after being carried over a route. Design
an O(k2|E|) time algorithm to decide whether Squirtle and Fletchling can reach Trovita
Island.
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Lecture Summary
• Priority Queues

• Heaps

• Heap sort

Exercises
1. Practice with heaps:

(a) Draw the compact binary tree associated with the array

1 A = [7, 3, 5, 6, 2, 0, 3, 1]

(b) Turn it into a max heap via linear time bottom-up heap-ification.

(c) Run insert(9).

(d) Run insert(4).

(e) Run delete max.

(f) Run delete max again.

2. How would you find the minimum element contained in a max heap?

3. How long would it take to convert a max heap to a min heap?

4. Top-k Leaderboard: In order to maintain a Tetris leaderboard, Alice would like to keep

track of the k highest-scoring players, but does not care about the ranking of those players

as long as they are the highest-scoring set of k players. Scores update whenever a new game

is finished. At any given point in time, the highest-scoring player may be disqualified and

have their score removed from the leaderboard.

Alice is requesting a data structure that would allow her to efficiently maintain her leader-

board. Assuming a total of n players, she would like to support the following operations:

• insert: insert players and their scores to the data structure in O(log n)

• remove: remove the highest-scoring player and their score from the data structure in

O(log n) time
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• build: given an initial array of n players and their scores, construct the data structure

in O(n log k) time

• highest-ranking-k: return the highest-scoring set of k players, as a pointer to an

array containing these players, in O(1) time

Note that there is not enough time to construct the desired array of k players (which would

take O(k) time), but it is sufficient to return a pointer to an array that has already been

constructed as a part of the data structure, which would only take O(1) time. Also, recall

that you must support insertion of new players in O(log n) time, and deletion of the highest-

scoring player in O(log n) time.

5. Proximate Sorting: An array of distinct integers is k-proximate if every integer of the array

is at most k places away from its place in the array after being sorted, i.e., if the ith integer

of the unsorted input array is the jth largest integer contained in the array, then |i� j|  k.

In this problem, we will show how to sort a k-proximate array faster than ⇥(n log n).

(a) Prove that insertion sort (as presented in this class, without any changes) will sort a

k-proximate array in O(nk) time.

(b) ⇥(nk) is asymptotically faster than ⇥(n2) when k = O(log n), but is not asymptot-

ically faster than ⇥(n log n) when k = ⌦(log n). Describe an algorithm to sort a k-

proximate array in O(n log k) time, which can be faster (but no slower) than ⇥(n log n).

Hint: Can you identify a subsequence of the array which must contain the minimum

element?
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Lecture Summary
• Dijkstra’s Algorithm

• Why Dijkstra works

• Dijkstra Runtime Analysis

Exercises
1. Using the graph below, apply Dijkstra’s algorithm from source node a to find shortest paths.

a b c

d e f

2

5

3

1
10

4

1 2

(a) What are the current d[v] values right before the second vertex is deleted from the

queue? What about before the fourth vertex is deleted?

(b) What is the final order of nodes added to the visited set? Are there multiple possible

orders?

(c) For which two vertices v does d[v] change more than once? Recall the first change for

each vertex is from 1 to a finite number.

2. In a graph G = (V,E) with positive edge weights, there are special nodes, s1, s2, . . . , sk,

where k is not necessarily a constant. For every node v in the graph, we want to find the

distance from the closest special node to v. Describe a O(|E|+ |V | log |V |) algorithm to do

so.

3. CIA officer Mary Cathison needs to drive to meet with an informant across an unwelcome

city. Some roads in the city are equipped with government surveillance cameras, and Mary

will be detained if cameras from more than one road observe her car on the way to her

informant. Mary has a map describing the length of each road and knows which roads have

surveillance cameras. Help Mary find the shortest drive to reach her informant, being seen

by at most one surveillance camera along the way.
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4. Ash is trying to cycle from Pallet Town to Viridian City without destroying Misty’s bike.

For every trail e in the area, he knows the probability p(e) of destroying the bike if he cycles

along e. Help Ash find the safest path to Viridian City (the path that minimizes his probabil-

ity of destroying the bike). Assume that all probabilities are independent and that arithmetic

operations take constant time.
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Lecture Summary

• Weighted (and in particular negative-weighted) edges complicate SSSP

• Bellman-Ford approach

• DAG relaxation

Exercises

1. Round i of Bellman-Ford
Let G be a weighted graph with vertices s and v, and assume there is a shortest path from
s to v that uses at most i edges. Prove that when running Bellman-Ford, after relaxing the
edges into the ith layer of the duplicated graph, the shortest distance to v is already known.

2. Phunmacks
Alice, Bob, and Casey are best friends who live in different corners of a rural school district.
One day, they decide to meet at some intersection in the district to play tee-ball. Each child
will bike to the meeting location from their home along dirt roads. Each road segment
between intersections has a level of fun associated with biking along it in a certain direction.
Road fun-ness may be positive, but could also be be negative, e.g., when a road is difficult
to traverse in a given direction, or passes by a scary dog, etc.

The children would like to maximize their total fun, which accumulates additively over the
road segments they individually bike over. Help the children plan their day by finding an
optimal tee-ball location, or return a continuously-fun bike loop in their district, if one exists.
You may assume that each child can reach any road in the district by bike.

3. Ez Money
Your friend Mash Coney was shopping online and noticed that someone was selling 3 Super
Potions in exchange for 5 Tofu Sandwiches. She saw another deal selling 4 Poké Balls for 1
Super Potion, and another one selling 1 Tofu Sandwich for 2 Poké Balls.

Mash worked out the math and realized that if she invests 5 Tofu Sandwiches, she can ex-
change them for 3 Super Potions, exchange those for 12 Poké Balls, and finally get 6 Tofu
Sandwiches. She just got a free Tofu Sandwich! Notice that this sort of opportunity would
not exist if the second deal were 3 Poké Balls for 1 Super Potion.
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Sadly, Mash can only handle the business side1, so she recruits you for your 6.006 expertise
to code an algorithm that will find these arbitrage opportunities from online stores.

Given an array D of n deals, describe an O(n2) time algorithm to find any opportunity that
leaves you with more of the same kind of item than you started with. Each deal is of the form
(A, x,B, y), indicating that someone will sell you y number of commodity B in exchange
for x number of commodity A, where and x and y are positive integers.

Mash is willing to initially invest any amount of any commodity, as long as she gets more
of them back. Your algorithm should return an array of commodities in the order you would
execute the exchanges (e.g., [Tofu Sandwich, Super Potion, Poké Ball, Tofu
Sandwich]), or None if no such opportunity exists. Briefly justify the correctness of your
algorithm, and argue the runtime.

1https://i.imgur.com/gl3Zc1e.png
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Lecture Summary

• SSSP recap

• APSP via SSSP |V | times

• Johnson’s algorithm

Exercises

1. Johnson’s practice
Consider the following graph. Show that if we were to increment all edge weights by +5
to make them non-negative, shortest paths would not be preserved. Then, using a proper

reweighting strategy, run Johnson’s algorithm to get an APSP matrix.

a b

c d

3 2

�5

4

1
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2. Twinleaf Travels
Ash is walking from Sunyshore City to Twinleaf Town. He wants to take the shortest path,

but he can only walk m miles before needing to rest at a Pokémon Center.

The road network is provided as a weighted undirected graph G = (V,E,w) along with

the subset P ✓ V of vertices that have Pokémon Centers. Each weight w(e) denotes the

positive length in miles of road e. The goal is to find a shortest path from node s 2 V to

node t 2 V that does not travel more than m miles between Pokémon Centers, or report that

it is not possible. Assume that s, t 2 P , and that the graph is a single connected component.

Sunyshore

a

b

c

d

e

f

Twinleaf

7

5

1

6

1

5 6 8

65

1

(a) In the graph above, Pokémon Centers are marked with Pokéballs. Find the shortest

path from Sunyshore City to Twinleaf Town when m = 1 and also when m = 10.

(b) Give an algorithm to solve the general problem with arbitrary m and arbitrary G, and

justify its runtime.

3. Useless Nodes
Let G = (V,E) be a directed weighted graph with no negative cycles. We say a vertex v is

useful if there are two vertices s, t 6= v such that v is on a minimum-weight path from s to t.

(If there are multiple minimum-weight paths from s to t, v only has to be on one of them.)

Describe an O(|V |3)-time algorithm to determine exactly which vertices of G are useful.
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Lecture Summary
1. Greedy Algorithm / Proof Template

• Identify the Greedy Choice

• Prove the corresponding Greedy Choice Property

• Prove the corresponding Self-Reduction

• Algorithm: order input, then iterate GC

2. Activity Selection Problem

3. Activity Scheduling Problem

Exercises
Exercise 1: Given a set X = {x0  x1  · · ·  xn�1} of points in the real line, find minimum

number of intervals of unit length that cover all points (e.g. the interval [1.25,2.25] covers the point

2.0).

As an example consider the points, {1.9, 2.4, 3.7, 4.6, 8.1, 9.8}. Then, the minimum number of unit

intervals is 4 as shown by the red, green, blue, and black intervals as shown in the figure below.

1.9 2.4 3.7 4.6 8.1 9.8

Hint: What observation can you make of the optimal solution?

Exercise 2: We are given n processes. Each process i takes ti time to complete. We need to

schedule processes sequentially, i.e., find a permutation � such that process �[1] is scheduled before

�[2], which is scheduled before �[3], and so on. The finishing time of process �[i] is then

C�[i] =
iX

j=1

t�[j]

Design an algorithm that finds a permutation � such that the average finishing time is minimized.

The average finishing time is defined as

1

n

nX

i=1

C�[i]
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Exercise 3: You have come across a treasure consisting of several different types of precious

metals. The treasure chest holds containers of n metals, where the i-th container has weight wi

and total value vi. Unfortunately, you can only carry a total weight of W - otherwise, you would

just take the entire treasure chest with you! Determine how much weight xi of metal you will take

from each container (note that necessarily 0  xi  wi) in order to maximize the total value of the

treasure you take.

For example, if W = 2, w1 = 2, v1 = 2, w2 = 1, v2 = 1, then you could take 1.5 unit weight of

metal 1 and 0.5 unit weight of metal 2, for a total value of 2.

Exercise 4: Given a value V , if we want to make a change for $V , and we have an infinite supply

of each of the denominations in currency, i.e., we have an infinite supply of { $1, $5, $10, $25 }
valued coins/notes, what is the minimum number of coins and/or notes needed to make the change?
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Lecture Summary

1. Prefix Free Codes

2. Huffman Algorithm

Exercises

1. Alice wants to throw a party and she is trying to decide who to invite. She has n people

to choose from, and she knows which pairs of these people know each other. She wants to

invite as many people as possible subject to the constraint:

For each guest, there should be at least five other guests that they already know.

Describe and analyze an O(n2)-time algorithm that computes the largest possible number of

guests Alice can invite, given a list of pairs, where a pair (i, j) represents guest number i and

guest number j knowing each other.

2. A wiggle sequence is a sequence where the differences between successive numbers strictly

alternate between positive and negative. The first difference (if one exists) may be either

positive or negative. A sequence with one element and a sequence with two non-equal

elements are trivially wiggle sequences. For example, the array [1, 7, 4, 9, 2, 5] is a wiggle

sequence, but the array [1, 7, 4, 5, 7] is not.

Given a integer array A of length n > 0 with no consecutive equal elements, we want to find

the length of the longest wiggle subsequence.
1

(a) Prove that there is an optimal solution (i.e. max-length wiggle subsequence)

that includes A[0].

(b) We say that A starts by increasing if A[0] < A[1] or A has only one element.

Prove that if A starts by increasing, every optimal solution which includes A[0]
also starts by increasing.

(c) Give a greedy algorithm to compute the longest wiggle subsequence, prove its

correctness, and analyze its runtime.

1
A subsequence of A contains a subset of the elements of A, in the order they appear in A, but not necessarily

consecutive.
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Lecture Summary
• Exponential recursive approach

• Memoization so we don’t keep recomputing the same thing

• Implementing the same solution without recursion

• SRTBOT framework

Exercise 1: Simplified Blackjack
We define a simplified version of the game blackjack between one player and a dealer. A deck
of cards is an ordered sequence of n cards D = (c0, . . . , cn�1), where each card ci is an integer
between 1 and 10 inclusive.

Blackjack is played in rounds. In one round, the dealer will draw the top two cards from the deck
(initially c0 and c1), then the player will draw the next two cards (initially c2 and c3), and then the
player may either choose to draw or not draw one additional card.

The player wins the round if the value of the player’s hand (i.e., the sum of cards drawn by the
player in the round) is more than the value of the dealer’s hand, and at most 21. The game ends
when a round ends with fewer than 5 cards remaining in the deck.

Given a deck of n cards with a known order, describe an O(n)-time algorithm to determine the
maximum number of rounds the player can win by playing simplified blackjack with the deck.
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Exercise 2: Wafer Power
A start-up is working on a new electronic circuit design for highly-parallel computing. Evenly-
spaced along the perimeter of a circular wafer sits n ports for either a power source or a computing
unit. Each computing unit needs energy from a power source, transferred between ports via a
wire etched into the top surface of the wafer. However, if a computing unit is connected to a power
source that is too close, the power can overload and destroy the circuit. Further, no two etched wires
may cross each other. The circuit designer needs an automated way to evaluate the effectiveness
of different designs, and has asked you for help. Given an arrangement of power sources and
computing units plugged into the n ports, describe an O(n3)-time dynamic programming algorithm
to match computing units to power sources by etching non-crossing wires between them onto the
surface of the wafer, in order to maximize the number of powered computing units, where wires
may not connect two adjacent ports along the perimeter. Below is an example wafer, with non-
crossing wires connecting computing units (white) to power sources (black).
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Lecture Summary
• Longest Common Sub-Sequence (LCS) problem

• Longest Increasing Sub-Sequence (LIS) problem

Exercise 1: Edit Distance
A plagiarism detector needs to detect the similarity between two texts, string A and string B. One
measure of similarity is called edit distance, the minimum number of edits that will transform
string A into string B. An edit may be one of three operations: delete a character of A, replace
a character of A with another letter, and insert a character anywhere in A. Describe a O(|A||B|)
time algorithm to compute the edit distance between A and B.

Exercise 2: Arithmetic Parenthesization
You are given an arithmetic expression without any parentheses: a0 ⇤1 a1 ⇤2 a2 · · · ⇤n�1 an�1,
where each ai is an integer and each operator ⇤i 2 {+,⇥}. Describe a dynamic program to place
parentheses (with correct syntax) to maximize the value of the resulting expression. For example:

8 + 4⇥ 3 + 5 ! (8 + 4)⇥ (3 + 5) = 96

8 + (�4)⇥ 3 + (�5) ! 8 +
�
(�4)⇥ (3 + (�5))

�
= 16
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Lecture Summary

1. Multiple examples to solve shortest path using Dynamic Programming.

2. SSSP in DAG using Dynamic Programming.

3. Bellman Ford using Dynamic Programming.

4. New algorithm for APSP: Floyd–Warshall. It takes in O(|V |3) time and matches Johnson’s

runtime for dense graphs.

Exercise 1: Bowling along Shortest Paths

There are n bowling pins in a row, and the ith pin has an associated value vi for i 2 {1, . . . , n}. You

can knock down pins individually or in pairs: knocking pin i down individually earns vi points,

and knocking pins i�1 and i down together earns vi�1 · vi points. A pin can only be counted once,

and you don’t have to knock down all the pins (maybe vi < 0).

a) Design a DP algorithm to find the maximum possible score, and analyze its runtime.

b) Design an algorithm that solves the same problem by constructing a graph and then running

a single source shortest path algorithm. Analyze its runtime.

Exercise 2: Counting Shortest Paths

Given an undirected weighted graph G = (V,E,w) with n vertices and m � n edges, and a vertex

s, describe an O(nm) time algorithm to compute the number of shortest paths from s to each other

vertex v 2 V . Assume that all cycles have positive weight, but note that edges may have negative

weight.
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Exercise 3: Jogging on a Budget

Your new fitness tracker has been helping you plan a jogging route through town. Starting at home

s, you want to run exactly 5 miles, after which you will be too tired to jog and will call your

favorite cow-themed ride-sharing service Uder to take you back home.

The tracker has a built-in town map with n intersections and m two-way road segments {u, v} of

length w(u, v), which is always a multiple of 0.1 miles. Using GPS, the innovative device only

updates your jogging progress whenever you fully traverse a road segment from one intersection to

the other. The tracker also has the Uder app, listing the price of being picked up at an intersection

v as pv Moo-lah.

Design an O(n+m) time dynamic program to choose a jogging route that minimizes the amount

of Moo-lah you will have to spend to ride home after running exactly 5 miles.
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Lecture Review

• Polynomial vs Pseudo-Polynomial Time

• Sandwich Cutting

• Subset Sum

– Input: Set of n positive integers A[1, . . . , n] and a target T .

– Output: Is there subset A0 ⇢ A such that
P

a2A0 a = T ?

– Can solve with dynamic programming in O(nT ) time

– The algorithm is only efficient in the special case where T is polynomial in the length
of the input, but in general it could be exponential.

Exercises

We’ll look at several problems related to Subset Sum.

1. Describe an algorithm to solve Partition: Given a set of n positive integers A, determine
whether A can be partitioned into two subsets A1 and A2 of equal sum.

For example, A = {1, 3, 4, 12, 19, 21, 22} can be partitioned into A1 = {1, 19, 21} and
A2 = {3, 4, 12, 22}, which both have sum 41.

2. Adapt the Subset Sum algorithm to work on sets containing negative numbers.

3. 0-1 Knapsack.
We are given a capacity S and a list of n items, which each have a size si and a value vi. The
goal is to find the subset of items with total size at most S that has maximum total value. As
before, “0-1” means that we can take each item only zero or one times; there’s only a single
instance of each item.

Describe an O(nS) time algorithm to solve 0-1 Knapsack.

We’ve made CoffeeScript visualizers solving Subset Sum and 0-1 Knapsack:

https://codepen.io/mit6006/pen/JeBvKe

https://codepen.io/mit6006/pen/VVEPod





Recitation 22 2

4. Close Partition. (optional) Given a set of n positive integers A, describe an algorithm to
partition A into two subsets A1 and A2 such that the absolute difference

��PA1 �
P

A2

��
between their sums is minimized.

5. (optional) Solve Close Partition (from the previous problem) by turning it into an instance
of 0-1 Knapsack. In other words, describe a polynomial-time reduction from Close Partition
to 0-1 Knapsack.

6. Unbounded Knapsack. (optional) Unbounded Knapsack is the same as 0-1 Knapsack,
except that there are many copies of each item available—you can take as many as you like.
Design an algorithm to solve this problem.
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Lecture Summary
• Decision problems and problem classes

• Nondeterministic Polynomial Time NP

• Reductions

• NP-hardness

Exercises
1. In an undirected graph, a clique is a set of vertices such that every pair of them is connected

by an edge. Given an undirected graph G = (V,E) and an integer k, CLIQUE asks whether
G has a clique of size k.

Show that CLIQUE is in NP by designing a verifier for it: specify what the certificates
represent, describe the verifier itself, analyze its runtime, and argue that the verifier takes
polynomial time in n, the size of the input.

2. Consider two decision problems problems A and B. Assume there is a polynomial time
reduction from A to B which takes an instance of A of size n and transforms it into an
instance of B of size O(n2). Assume that B is in NP, and instances of B of size m have
certificates of length O(m3). Circle all necessarily true statements:

(a) Instances of A of size n have certificates of length O(n2).

(b) Instances of A of size n have certificates of length O(n3).

(c) Instances of A of size n have certificates of length O(n6).

(d) B is NP-complete.

(e) A can be solved in EXPTIME.
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3. For decision problems A B, and C, assume A P B and B P C. If B is NP-Complete,
select all statements that must be true:

(a) A P C.

(b) A is in NP.

(c) A is NP-Hard.

(d) C is in NP.

(e) C is NP-Hard.

4. Consider two decision problems A and B. The problem A [ B asks whether its input is a
YES instance of A or a YES instance of B. Similarly, the problem A \ B asks whether its
input is a YES instance of A and a YES instance of B.

Circle all necessarily true statements.

(a) If A,B 2 P, then A [ B 2 P.

(b) If A,B 2 P, then A \ B 2 P.

(c) If A,B 2 NP, then A [ B 2 NP.

(d) If A,B 2 NP, then A \ B 2 NP.

5. Recall that in PARTITION, we are given a list of numbers A and asked whether it can be
partitioned into two lists with the same sum. This problem is NP-complete.

We can define a decision problem 0-1 KNAPSACK as follows: we are given a capacity S, a
target value V , and a list of items, which each have a size si and a value vi. We are asked
whether there’s a subset of items with total size at most S and total value at least V . (The
“0-1” in the name comes from the fact that each item can be taken zero or one times, but not
multiple times or a fractional value.)

Prove that 0-1 KNAPSACK is NP-hard by describing a reduction from PARTITION to 0-1
KNAPSACK.
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Computability

Exercise: Acceptance Problem

The following problem, similar to the Halting Problem, is called the Acceptance Problem.

ACCEPT

Input: a binary string, interpreted as a pair (A, x)

– A is an algorithm

– x is some other binary string

Output:

– YES if A(x) eventually halts and outputs YES

– NO otherwise, i.e. if A(x) outputs NO or doesn’t halt

(a) Prove that ACCEPT is recognizable. That is, prove that there exists an algorithm B
such that B(A, x) = YES iff ACCEPT(A, x) = YES.

(b) Prove that ACCEPT is undecidable by reducing from HALT.

DP Review

Exercise 1: Coin Row Problem Revisited

Here’s a variation on the coin row problem from the very first DP lecture: there is a row of coins
with positive integer values, and once again you want to maximize the total value of the coins you
pick up. This time, the rule is that you can only pick up a run of r consecutive coins if there are at
least r coins anywhere to the left of it that you don’t pick up.

For example, here is a row of coins, with the coins you pick up in the optimal solution circled:

10 12 8 27 25 11 9 1
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In the optimal solution, you skip 10 and 8 so that you’re allowed to pick up both 27 and 25. But
you only skipped two coins on the left, so you aren’t allowed to also pick up 11.

Note that at r = 1, the rule says that to pick up a single coin you must have skipped a coin to its
left; in particular the first coin has to be skipped.

Design an algorithm to find the maximum value you can pick up, and that runs in O(n3) time when
there are n coins.
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Exercise 2: Srini’s Journey Goes South

Srini is driving his JunkJet through Cityland. Cityland is a nation of 1+2+ · · ·+n = n(n+1)
2 cities,

arranged in an equilateral triangular lattice. The j
th city on row i is C[i][j]. Cityland is oriented so

that one of its axes of symmetry runs due north-south, as shown in the diagram below.

Srini starts at the northernmost city in Cityland. Each day, he drives from his current city to one
of the two cities immediately south (i.e., immediately southeast or southwest) of it, meaning that
if he’s at city C[i][j], the next day he can go to either C[i + 1][j] or C[i + 1][j + 1]. His journey
ends when he reaches one of the n cities on Cityland’s southern border.

Each city has a disapproval score, which is an integer. The disapproval scores may be zero,
negative, or positive. The disapproval score for the j

th city on row i is A[i][j]. For example, if
n = 4, the disapproval scores may be as shown above.

Over all possible journeys, Srini wants to know the maximum product of disapproval scores of
the cities he visits. In our example above for the particular values of A, the maximum disapproval
score corresponds to the path marked and has value (�1)(�2)(�2)(�1) = 4.

Design an O(n2)-time Dynamic Programming algorithm that returns the cities on the path with
maximum product of disapproval scores. You may assume that all arithmetic operations take con-
stant time.
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Exercise 3: Disjoint Paths

Alex has a rooted tree T with n vertices. Alex would like to find k-edge paths in the tree which
are directed towards the root, meaning each vertex in the path (except the first) is the parent of the
previous vertex. Note that each such path has k + 1 vertices. Alex further requires that the paths
are all disjoint, meaning no two paths share any vertices.

Below is an example where k = 3 with seven disjoint paths. It’s possible to find eight disjoint
3-edge paths in this tree.

(a) Describe, analyze, and prove correctness of an O(n)-time greedy algorithm to compute the
maximum number of disjoint paths that can fit in the tree. Your algorithm is given a rooted
tree T and an integer k as input, and it should output the largest possible number of disjoint
k-edge paths directed towards the root in T . Do not assume that T is a binary tree. For
example, given the tree above as input, your algorithm should return 8. Note that you only
need to return the number of paths and not the location of the paths.

Prove the greedy choice property you rely on, and argue the correctness and runtime of your
algorithm.

(b) Now suppose each vertex in T has an associated reward, and your goal is to maximize the
total reward of the vertices in your paths, instead of the total number of paths. Give an
example where your greedy algorithm does not return the optimal reward.

Hint: Try to come up with an example for small k.

(c) (optional) Describe an O(kn)-time algorithm to compute the maximum possible total reward
from vertices in paths.




