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Introduction to Algorithms: 6.1210
Massachusetts Institute of Technology
Brynmor Chapman, Srini Devadas, Henry Corrigan-Gibbs, Will Leiserson Recitation 1

Recitation 1

Lecture Summary

* Algorithms, correctness, and efficiency

 Preschool versus grade school algorithms for addition

 Grade school versus Karatsuba’s algorithms for multiplication

Exercises: Review of big-O, Karatsuba’s Algorithm

1. Getting a feel for common recurrences:

()

(b)

()

Prove that T'(n) < T'(n/2) 4+ O(n) is solved by T'(n) = O(n), using the following
steps. (1) Draw a recurrence tree representing this recurrence relation. Analyze the
total amount contribution at each level and the number of levels of the tree (depth). (ii)
Prove that the sum } , ., (total from level £) = O(n), substituting the expression
you got in part (i) for “total from level ¢”. (iii) Check the correctness of your solution
using the Master Theorem.

The runtime of the optimal sorting algorithm mergesort (covered later in the course)
satisfies the recurrence 7'(n) < 27'(n/2) + O(n) on lists of size n. Perform the same
analysis as in part (a) for this recurrence. Optionally, solve the recurrence using the
substitution method.

Recall from lecture that the naive divide-and-conquer algorithm for multiplication sat-
isfies the recurrence 7'(n) < 47'(n/2) 4 O(n). Perform the same analysis as in part (a)
for this recurrence.

2. See the lecture 1 notes for the definition of Karatsuba’s algorithm. Recall that the number
of basic operations it uses to multiply two n-digit numbers, T'(n), follows the recurrence
relation T'(n) = 37 (n/2) + Cn, for some constant C'. Use the recursion tree method to
prove that T'(n) = O(n!°23),

3. In this class we will frequently prove correctness of algorithms via induction. Early in the
course, these proofs might seem unnecessary, because we will start by studying (relatively)
simple algorithms whose correctness is easy to see. However, it is important to get practice
with these inductive correctness proofs, because, as the course progresses, we will see more
and more sophisticated algorithms, whose correctness is far from obvious. We will convince
ourselves of their correctness via proofs.
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Recitation 1 2

With this in mind, prove by induction on n that Karatsuba’s algorithm run on two n-digit
integers x,y always returns « - y. The proof is relatively straightforward, but has a tricky
case which needs to be handled carefully.

* We ignored the base case of the recursion when discussing Karatsuba’s algorithm in
class. Describe how the algorithm might handle this base case. For this analysis, feel
free to modify the algorithm by choosing the size of the base case to be any constant.

* Your proof should have a base case and an inductive case, corresponding to the recur-
sive and base cases of Karatsuba’s algorithm.

4. (optional) Toom-Cook multiplication is a generalization of the Karatsuba algorithm for mul-
tiplication, which can achieve even better asymptotic results. The runtime for Toom-Cook
multiplication satisfies T'(n) = (2k — 1)T'(n/k) + O(n), where k is a positive integer pa-
rameter of the algorithm (Karatsuba multiplication corresponds to £ = 2). Use a recurrence
tree to solve for the asymptotic runtime of Toom-Cook multiplication. Your answer should
involve k as a parameter.
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Recitation 2

Recitation 2

Lecture Summary

* Algorithms
* Efficiency and Worst-Case Analysis
* Model of Computation

» Peak Finding and Binary Search

Exercises: Algorithms, efficiency and worst-case analysis

Problem: Given the students in your recitation, return either the names of two students

who share the same birthday and year, or state that no such pair exists.

Algorithm: Choose one student at a time and ask for their birthday. Then ask everyone
else in the room whether they have the same birthday, and if a match is found, return it.
Otherwise, send the chosen student out of the room, and run the same algorithm on the

remaining students. If there are no more students in the room, return None.

# 1. Prove that the birthday algorithm is correct by induction.

2. Provide an upper bound on the worst-case runtime for the birthday algorithm. Use the im-

plementation below as a guide:

def birthday_match(students):
rrr
Find a pair of students with the same birthday
Input: 1list of student (name, bday) tuples such as
(("a", "8-28-1999"), ("b", "10-25-2003"))
Output: tuple of student names or None

rrrs

# Base case

if len(students) == 0: o(1)
return None
(namel, bdayl) = students[0]
14 for 1 in range(l,len(students)): O(wn)
# Check 1f students are the same
(name2, bday2) = students[i]
if bdayl == bday2: O(1)

return (namel, name2)
11 return birthday_match(students[1l:]) O(w)
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Recitation 2 2

3. Provide a lower bound on the worst-case runtime for the birthday algorithm.

Exercises: Binary search

4. Binary search is an efficient algorithm for finding an element in a sorted array. Consider
an array with n_unique numbers that has been sorted in ascending order and then rotated an
unknown number of positions & such that the index of each number in terms of its original
index 7 is 7 + £ mod n.

E.g. below is an example rotated array of length 11 which is rotated £ = 6 positions, com-
pared to the original sorted array.

Index: 0 1 2 3 4 5 6 7 8 9 10
rotated array: [ 7, 8, 10, 12, 13, 15, 1, 2, 3, 4, 6 ]
k=6
12
sorted array: (1, 2, 3, 4, 6, 71, 8, 10, IS, 13, 15 ]

(a) Design an O(logn) algorithm to find the value of k. Don’t forget to prove correctness
and argue runtime.

(b) Design an O(logn) algorithm to determine if a number x is in the array. Again, re-
member to prove correctness and argue runtime.

5. Given a positive integer n, return L\/ﬁj . The algorithm should run in time O(logn).

6. Given a monotone function f : Z — {—1,0,1} with exactly one root «, find . The
algorithm should run in time O(log |c|). (Assume that f can be evaluated in constant time).
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Solution:

Algorithm: The algorithm maintains an upper bound b and a lower bound a, initialized as
a = 1and b = n. Until |a — b| < 1, the algorithm performs the following steps. Select an
integer z = | (a+b)/2) and compute z°. If z* = n, return z. If 2> < n, update a = z, while
if z2 > n, update b = z.

Finally, return a.

Proof of Correctness: We prove that the state of the algorithm always satisfies the following
invariant: the interval [a, b] (inclusive) always contains |/n|. We prove this by induction
on iterations of the loop. The base case has @ = 1 and b = n; clearly |y/n| € [1,n]. For
the inductive case, we start by assuming that |/n| € [a,b]. If z* < n, then z < |\/n], so
|v/n] € [z,b], and similarly for the case that n < z2. This finishes the induction.

Lastly, we prove that this invariant proves correctness of the algorithm —if | \/n| € [a,a+1],
then a = |y/n].

Running time: Each iteration of the loop requires time O(1). And |a — b| reduces by a
factor of 1/2 each time, starts as n, and gets no smaller than 1. So the algorithm runs in time
O(logn).

2

2



Solution:

Algorithm: This is a variant of Binary Search called Exponential Search. Initialize B = 1,
then double B repeatedly until f(—B) < 0 < f(B). Binary Search the range [—B, B].

Proof of Correctness: For all B > |a|, we have —B < a < B, and by monotonicity
f(=B) < f(a) = 0 < B. B is a strictly increasing integer, and there are only finitely
many B for which the loop guard fails, so the first step will eventually terminate. At this
point we have f(—B) < 0 < f(B). Again by monotonicity and uniqueness of «, this gives
—B < a < B. Correctness now follows from Binary Search.

Running time: Each iteration of the loop takes constant time. B increases by a factor of 2
each time, starts as 1, and ends between |a| and 2|a|. Therefore the first loop runs in time
O(log |a|). Binary Search on a range of length < 4|a| takes O(log |a|) time, for a total of
O(log |a]).
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Recitation 3

Lecture Summary

 Data structures, interfaces and implementation
* Amortization
o SEQUENCE interface

* Implementations of the SEQUENCE interface: linked list, dynamic array

Exercises

1. Given a implementation of the STACK interface which takes O(1) amortized time for each
operation, show how to use it to implement the QUEUE interface, and analyze your imple-
mentation’s runtime.

2. Modify the Dynamic Array implementation of the SEQUENCE interface such that the opera-
tions insert_firstanddelete_ first take O(1)amortized time alongside insert_last
and delete_last.

3. Suppose the next pointer of the last node of a linked list points to an earlier node in the list,
creating a cycle. Given a pointer to the head of the list (without knowing its size), describe a
linear-time algorithm to find the number of nodes in the cycle. Can you do this while using
only constant additional space outside of the original linked list?

4. (Optional, hard) Suppose you have an implementation of the QUEUE interface which takes
O(1) amortized time for each operation. Show how to use it to implement the STACK inter-
face using only black-box access to a single QUEUE and constant extra space. (Black-box
means that you are only able to interact with the QUEUE using the QUEUE interface.) What
are the best possible amortized runtimes you can achieve for the STACK operations?
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Recitation 4

Lecture Summary

* Incremental algorithms, e.g. insertion sort, selection sort
 Sorting (stable, in-place)

 Divide and conquer, e.g. merge sort, 2D peak finding

Exercises

1. Describe how to use a sorted array to implement the Set interface. What is the runtime of
each operation? (You can assume there is already plenty of space allocated for the array.)

2. Describe how to use a sorted doubly linked list to implement the Set interface. What is the

runtime of each operation? — (he2d & +ail)
(Forward & back)

3. In a train station, trains come at certain arrival times and leave at certain departure times.
Given the sorted list of all arrival times and the sorted list of all departure times, what’s the
minimum number of platforms the station needs to accommodate all the trains? Give an
algorithm and analyze it. Assume there are 0 trains in the station to begin with.

Divide and Conquer

Inversion Counting

We will see how to solve this problem using the divide and conquer approach: Given an array,
count the number of inversions in it. Two elements a[i] and a [ j] form an inversion if a[i] >
al[j] buti < j. The inversion count of an array gives an idea of how sorted it is.

4. What is the brute force algorithm for solving this problem? What is its running time?

5. Find and analyze a more efficient algorithm for the inversion count problem.
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Lecture Summary

LO05

L06

Comparison Model and Lower Bound
Direct Access Array Sort

Counting Sort

Tuple Sort

Radix Sort !

Comparison Find Lower Bound
DAA Sets
Hashing + hash functions

Collisions and chaining

DUPLICATES

Given an unsorted array A = [ay, . . ., a,—1] containing n positive integers, the DUPLICATES prob-
lem asks whether there is an integer that appears more than once in A (the answer is ‘yes’ or ‘no’;
you don’t need to return the repeated integer). All of the questions in this section should have 1-3
sentence answers.

1.
2.
4 3.
+# 4.

Describe a (very simple) worst-case O(n?)-time algorithm to solve DUPLICATES.

Describe a worst-case O(n log n)-time algorithm to solve DUPLICATES.

Describe an expected O(n)-time algorithm to solve DUPLICATES.
G hasking!
If k < nand a; < k for all 7, describe a worst-case O(1)-time algorithm to solve DUPLI-

CATES. w:-1o items. k <lo for 21 items =D there will be 2 duplicate

. If n < kand a; < k for all i, describe a worst-case O(k)-time algorithm to solve DUPLI-

CATES.

!CoffeeScript Counting/Radix sort visualizer: https://codepen.io/mit6006/pen/Lgzgrd



for eaclL #, loop throvgh €Entire array and see f $here S >1 occurewnce, - B(wn?)

mevrge Sort avray thewn scan (see i any adjacent pairs are same). O(niogn) + O(n) = Olniogn)

hash all i+tems. cwneck if inserting 3 doplicate 25 you insert inte +able.
hast

expected chain size s O(x+1), Oli)exp +o cnheck each chain = Oln)ex

YES; 2aren’t ewvnoough distinct vais.

counting Sort N 2K ; when seeing dupe, be downe.
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Linear Sort

1.

>

el

. Describe a linear time algorithm to sort 7 integers from the range [-n*, ... n

True or False: There exists a comparison sorting algorithm that sorts 5 numbers and uses at
most 6 comparisons in the worst case.

Sort the following integers using a base-10 radix sort.

(329, 457, 657,839, 436, 720, 355) —> (329, 355, 436, 457, 657, 720, 839)

Describe a linear time algorithm to sort a set n of strings, each having £ English characters.

50].

. (Optional) You are tasked with writing a pest buddy app, and you initial idea is to take a

list of kerbs as input, and find all similar kerb pairs from the list and group students up that
way. We define two kerbs to be similar if they differ by exactly one character. Assume each
student has an 8 character long kerberos and no two kerbs are the identical. You want to test
your idea and decide to first design an algorithm that counts the number of all similar kerb
pairs. Design an algorithm that counts the similar kerb pairs in linear time.

Hashing tuples

The hash functions we’ve discussed only process a single machine word. What if we want to hash
something much bigger, like an entire file?

Let’s hash tuples of integers of the form (a4, ..., a;). For this section, assume that, for any prime
‘m, you have a hash function 1 which sends a tuple of ¢ integers to a hash in {0,...,m —1}, and
can be computed in O(t) time. Furthermore, assume that h comes from a distribution that satisfies
the Simple Uniform Hashing Assumption.

Given a list of bad tuples [vy,...,v,], we want to construct a data structure that supports the
following operation: given a new tuple v, check whether v is identical to any bad v;. The time of
this operation and the space occupied by the data structure should be as small as possible.

It’s okay if an innocuous tuple is ocassionally flagged as bad, as long as this happens with proba-
bility at most 1% for each tuple that isn’t in the list.

Design:

1.

an O(tn)-time preprocessing algorithm which takes [v1, . . ., v,] and builds a data structure
that takes space O(n).

2. alookup operation which takes a tuple v and uses the preprocessed data structure to deter-

mine whether v € [vy,...,v,] in time O(t) and with false-positive probability at most 1%
(and no false negatives).

2You don’t need to figure out how to achieve this, but in case you’re curious, the key idea is to compute a rolling
hash: first compute hy = h(ay), then (abusing notation a bit) ho = h(hy,as), then hg = h(hg, asz), and so on. This
makes t calls to the basic hash function h.
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tsgamse: (720355 aze, uso, 6572, 3249, 8349, )
Sstable! (220, 329, 839,436,3554s52, 6572, )

(329,355 43¢, 452 6572, 720 839,)

tuple Sort » repeatedly Strings by each char from wright - lefy

each +aking O (n+26) = O(w) Hme

_/‘— need +to make 26 bucketS, (oop through
K rounds of covnting Ser},

n_elements

2lg. rons in B (vnk) +ime. ron +imes=linear ble

input size s O(nk)

2dd WYY ro each #H.  an keys au < 2nS° , 2ka < n®'

can sobiract N fom each Clemer of ouiput  to get Cercect B

72

HASHING TOUPLES:
@ @ make hash fonc. make an bad +upies go +to one boucketr; chances of tople
[]
qetting inte bad bucket+r =W
- -

d.s. Stering all juples will _have size J2 (4n)!

°* h2sh +able lenqth= prime &

« magnitude B(n) wWhwere w=# of vectors

]
COWnewm €200 =5 wm = le/e

‘PIY,MV\ =h(v) or b)=h(Wn\ o (o L(V.,) . hlv): h(v‘bj
J

rph

N\ 11 ﬂ
p) w~X

‘gU

Wuion

b ke

(™~
3)>




A/l26 RinARy TREES:

‘2ncestor/descendant, deP'Hnlhel'shl-

- draverSals: jw -ordev, pre-order, post-ovrder - 2l

1efF Subiree < root, figint subtree 5 rool

in-o-der +raversal returans EEyYyS wn so~treol oroder

IMPLEMENTING SET wl BST Proe:
‘Cinadle) » B(W
corder oes:

-iter-ordl)

cEind-min (Y / Find— maxl) — O(h) h=height of free

- find-nextlk) / Find- previe) = e (h)

msert (k) [delere (kY: B (h)
iF \eaf: derere
iE VL cwid: replace w/ child
1 2 cwiledl: Swap wi SuctcesSSsoy,

3F wmost | cweid

o

preserves order 3

o)

& - f%’

now have



Introduction to Algorithms: 6.1210
Massachusetts Institute of Technology
Brynmor Chapman, Srini Devadas, Henry Corrigan-Gibbs, Will Leiserson Recitation 7

Recitation 7

Lecture Summary

e Binary Trees'

* Binary Search Trees Operations (find, insert, delete, successor)

Exercises

1.

* 4.
# 5.

Give the in-order, pre-order, and post-order traversal orders for the following binary tree:

Practice with the BST implementation of the SET interface by inserting some items of your
choice into a small BST, and then searching for and/or deleting some keys.

. What order would we insert the elements 1, 2, 3, 4, 5, 6, 7 into a BST so that the height

of the resulting binary tree is maximized? How would we insert them so that the height is
minimized?

Prove that an in-order traversal of a BST yields a sorted array.

Given an array of items A = (aq, ..., a,_1), describe an O(nlog n)-time algorithm to con-
struct a binary search tree 7" containing the items in A such that 7" has height O(logn). You
may assume 7 is one less than a power of two.

. Let z and y be nodes in a BST, and suppose ¥ is the successor of = and x has no right child.

Prove that y is an ancestor of z, and in particular z is in the left subtree of y.

. Argue that the following iterative procedure to return the nodes of a tree in traversal order

takes O(n) time.

"Visualizer found at https://github.com/edemaine/poketree
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®

inorder—

def tree_iter(T):
node =
while node:

yield node
node =

T.subtree_first ()

node.successor ()

IN-OROER:

[o.e,n.E, T, A, F, c. 6]

PRe-oroER: (A, 8, D, E, H. I, Cc, F, 6]

* Post-oroer: [ D. H, I, E,8,F, c,C.A)

@I'F left Subiree: go +o awncestors

FINO- NEXT ()

i€ right subtree: Find soccessor

vl

reaching Smihgq in left

DELETE (k):

rveplace owitrlk right cunilel,

N
10
root L7 oA
insevrt: 10, 6, 18, 2, §, 7 © '8
7\
2 7
Eind (7)) O(2) s
10
Eind-next(s) » & VRN
/7\ '8
delere (6) = 2, &
10 s
VAERN
delete (7) = 2 s
S

if only left child: replace wl!
-
@ maximized: in  sovted order I\ ¢
’
1.2,3,4,S, 6,7 or 7.6,5, 4,3, 2,1: ‘u. hd
5\6 4
minimized: sStart W/ wmoddile el+ ) ,3
2
4
#lofs of waus 4o de this, 3s long 2as !
,'-I 2 s before |83, & before S 8 7
2 % (can _inSert in mang o €F orders)
/7N /¢ N\
''38 9

PF by STRONG

InNnOoULCTION:

n wodeS returns

sSorted order,

right nodes

P(n):= in ordew draveersal on @ST Wl
B.C.: nz=1 o returns itsele
ASSOUME 21q. holds For Il wn=1, ..., n-l, WTS: n
in-order traversal will do 1Ff+ > mid D right.
~left & riqht are sorted by T.H.
by BST propecty, 211 1eft nodes < wmid < 2an
wWill be returned in

®

wWe kvow 2lg. holds for wn-I.

®

correct order.

3dd:v\s 1 wnode will

be 2 |eaFf.

ef+ chrid.
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Appendix A: Binary Node and Binary Tree Implementation

class Binary_Node:

def

def

def

def

def

def

def

def

_init_ (A, x):
A.item = x

A.left = None
A.right = None
A.parent = None

# A.subtree_update ()
subtree iter(A):

if A.left: yield
yield A
if A.right: vyield

subtree_ first (A7) :
if A.left: return
else: return

subtree_last (A) :
if A.right: return
else: return

successor (A) :

if A.right: return

while A.parent and
A = A.parent

return A.parent

predecessor (A) :

if A.left: return

while A.parent and
A = A.parent

return A.parent

# wait for RO0S8!

#—O(n)
from A.left.subtree_iter ()

from A.right.subtree_iter ()

# O (h)
A.left.subtree_first ()
A

# O(h)
A.right.subtree_last ()
A

# O(h)

A.right.subtree_first ()
(A is A.parent.right):

# O(h)
A.left.subtree last ()
(A is A.parent.left):

subtree_insert before (A, B): # O(h)
if A.left:
A = A.left.subtree_last()
A.right, B.parent = B, A
else:
A.left, B.parent = B, A
# A.maintain() # wait for RO8!
subtree_insert_after (A, B): # O(h)

if A.right:

A = A.right.subtree_first ()
A.left, B.parent = B, A

else:

A.right, B.parent = B, A

# A.maintain ()

# wailt for RO8!
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49

50

51

def subtree_delete(A): # O(h)
if A.left or A.right:

52

if A.left: B = A.predecessor()

54

else: B = A.successor ()
A.item, B.item = B.item, A.item

55

56

return B.subtree_delete()
if A.parent:

57 if A.parent.left is A: A.parent.left = None
g else: A.parent.right = None

59

# A.parent.maintain ()

# wait for RO0S8!

60

return A




1oN AVL RoTATIONS:
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- m3intain Fraversal power
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AVL PROPERTY: for every node m, Iskew(m)| €1, can prove heighté€ Oliogn)
CALCULATE SKEW of node in constani +ree:
‘need weight of 1ef+ & right
* Mainidin  height+ of every wnode [stored @ every node)
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Recitation 8

Lecture Summary

* Balanced Binary Trees

Exercises

@ 1. What does this AVL binary search tree look like after inserting 187

lo
4
@ [y \ls v~o¥a+e-(eFi(ls") c

- \
G () e
\‘8

@ 2. What does this AVL tree look like after deleting 127?

% rotate 2x blc there's tiggag 3
7\
rotate-right(u 7 s
3t (9 /N
4z y
’
q lo
rotate-1eft(3) ,s N
3 |
7 N 7 N
17 42 9 10

3. When we rotate a tree, right or left, the in-order traversal remains the same. Do the pre-order
and post-order traversals remain the same?

@ 4. We’ve defined the AVL Property in terms of skew. Specifically, a tree has the AVL Property
if every node, n, in it has |[skew(n)| < 1. An AVL Tree can reach any of the leaves from the
root in O(logn) time. Imagine an AVL-2 Tree that allows a skew of up to two. Le., it only
guarantees |skew(n)| < 2. Show that the height of such a tree is still in O(logn,).

@ 5. We saw how to create an iterator for an AVL tree in which the NEXT operation takes amor-
tized constant time but worst-case logarithmic time. Describe how to change the AVL tree
such that this NEXT operation takes worst-case constant time. The functionality of the AVL
tree (including asymptotic runtimes) should otherwise be unchanged.
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6. Suppose you have some items z, each of which has one comparable key k;(z) and one
hashable key ks(x). Assume that both keys are unique. Describe an unordered SET data
structure that can INSERT efficiently and can FIND or DELETE efficiently using either key.
What is the runtime of each operation, and is it worst-case, amortized, and/or expected?

@ Not necessarily - such 3s in question 2, some 1eft [righs children ge+ swapped,

whichh would change +he ordering of ere/post order iraversal.

rot.

a 188+ <
/ \ —p q,
b ¢ ’
b
pre: abe Cab

* @ O, want to consider smallest (leas+ nodes) tree of height h.
AR

call this wnumber of nodes wn,
h<losnk<|osn N = Ny + N3 +
Nh>2:-Nh.3 —lower bounded
V\h>2.~(2|r\k-6)
N> 2"'3
h<¢3lognNun < 3logn € O(logn)
@@ we know traversing costS linear O(n) +ime, through every node.
TLOR: want +o go +hrovgh predecessors in O(1) worst case +ime

= LINKED LIST

CROSS-LINKING:

s//_\ sorved
-delete: normal AuL deleron 2 linked 1ist oleletion PN

Can e i )
(T le_Se 8_1°

.insert: normal AVL insertion s/r;//

insert into linked I'st from eparent blt elts.
*covldve B1so put pointers blt  Elts in +ree - each wode points to s predecessor/
Successor
©® AL O hasn rable
2 cross lmk  AVL iree (keyed by k) w! hash table (keyed by k).
€2ach clhain in hash «'ll _be 2 Iiaked Iisy of tree wnodes
find by ki uses 1 AvL €inol: O (logn) worst

© find by k2 uses 1 hLash (ind: O() expected

inset/del dynamic ops > amlex Ollegn)
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AvomenTaTionS
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ge+.a+(i) > Oltegn) o(1)

insert.2+(i)> O(togn) o(wn)

keyed by x-low

augmentration (stores size of subq-ree)

os_.rank (T x):

ount= x.lef+.S:iz2e +!

walk up tre@; if reach wode from right.

add node.lefi.size + |

F _wlo changing runkmes

for any wvode from just

O(1). & NOoT ancestors

in subtree.
that intersects w! [a.b]

averse down the +ree,

AVL SET: BST property

AVL SEQUENCE: M2intains order
(2)

s|3]2]2]]v]e @ &

® & O ®

sequence: does weot have keys,
ounty whave indices;
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Recitation 9

Lecture Summary

* Order Statistics
* Augmentations

e Interval Trees

Exercises

1. Suppose you want a data structure that maintains a SET of integers, with the additional
operation CLOSEST(), which should in constant time return the minimum positive difference
between two elements of your SET.

(a) Clearly CLOSEST() cannot be computed from scratch in constant time. A natural strat-
egy to attempt in such a situation is to make it an augmentation. Explain why CLOS-
E EST() cannot be an augmentation.

(b) Describe (with proof) an augmentation from which CLOSEST() can be computed in
constant time.
Hint: Use an ordered triple that captures the difference between the examples you
described above.

@ 2. Augmenting a binary tree can be useful if the items being stored need to support queries
based on two different data. The choice of key and augmentation need not be unique. Of-
ten there are dual representations in which the roles of key and augmentation are swapped.
Describe (with proof) an interval tree in which the interval |a, b] is keyed by b instead of a.

3. Which of the following proposed augmentations for a binary search tree would work? For
each one, either (briefly) describe how to efficiently compute the augmentation at v from
the augmentation at its children, or explain why this is impossible. Assume the BST has no
other augmentations.
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4. Describe a data structure that maintains a sequence of n bits and supports two operations,

© 2

@

each in O(logn) time:

* flip (i) : flip the bit at index

* ones_upto (i) : return the number of bits in the prefix up to index 7 that are one

H(®

Bugmentations shoutd apply 2l _wnodes in +ree, 3@{
oo
whic\hh can be 2 2. - #n 2ug. wen't work, é €& 10 8 12 closer, but Cawt
[ )

cCompute aug. in constrant

Closest(): even w/ avgmentation, have +o closestl) time blc might have to
go 21t +he way down 4ree
compute difference wl everything in sobtree

'38 min
3 2ugmentations: T.mins wmin(T. 1e£t.min, T.item) 12-10:2(12) max
3 @{ \ closest
1o 8
T.maxzmax(T right. max T .'c-em) 3 .-
T.i¢twmr - '\’.r.'shb.mln i 3 @5 o
T.closest = min dT.item -T.ieft.max max: 3 ‘ 2
T.lef+.closest close:

T. ri shc-. closes+

2l _intervals [a.b] keyed by b 2 augmentesd by min. minimum o in Subiree

interval-searcu (T, (a,b2):

a b
3 ,22]
if [o.b] intersects T's inteecval, output T y

\ N¢21, 22 %16

2S5
else f T-r-'sho.m.-n £b, recurse right
8

eise recvurse |eff
PF _of CORRECTMNESS: 2lwadys frecurse on Side «/ 3nswer

say (a.bl intersects wl some [c.dT, so csb & asd
1et [c.dd]) be interval Wl wax d.

if [e,d] in right svbiree , T.cight.min € ¢ £ b, So
récurse own right

if Ledd in (@FF Subtree, for any [er, d'] in rignt sobtree,
it cannot intersect [a,6] (c'>b). but T right.min £¢’, so

recurse own lef4.

£ _wnot possible blc each svbiree’s median s d:fe. ,' \3
f1_possible: merge Sort L 8r values & Lkeep first 3 elds. \/7\‘—7
f3 possivie: F3(R) +F3(r) + | (if v.vawe is odd) 3 ¢ A
fu not possible:  think 2b. leff VvS. right = ex: 21~‘; o

Yy oo



Solution:

Use a binary tree with n nodes, height O(log n), and size augmentations (this could be an
AVL tree, but we’ll never need the rebalancing features). The ﬁtﬂ node in traversal order
stores the value of the ith bit, and we augment each node A with A.subtree_ones, the
number of 1 bits in its subtree. We can compute this in O(1) time from the augmentations
stored at its children: add its childrens’ subtree_ones, and add one if A has a 1.

To implement £1ip (i), find the ™ node A using get_at (i) and flip the bit stored at
A.item. Then update the augmentation at A and every ancestor of A by walking up the tree
in O(log n) time.

To implement ones_upto (i), we use get_at (i) and track the 1s we’ve passed so far.
Specifically, whenever we go right from a node z, we add x. left .subtree_ones to our
current count, and add one more if the bit at z is 1. This takes the same amount of time as
get_at, which is O(logn).

Here’s a recursive implementation of ones_upto (T, i):

* Base case: if T is empty, return 0
e Ifi < size(T.left): return ones_upto(T.left, i)

e Ifi=size(T.left): return subtree_ones (T.left) o/

e Ifi > size(T.left): return subtree_ones (T.left) + T.item
+ones_upto(T.right, i - size(T.left) - 1)
index

ComtecaorT T

/_\ /\

_— T

\/



1oi8 GRAPHS:
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Vi Cu,w)

w: (u,v,s93
BFS. shoviest patl. from 2 wnode
@\@ o(ivi+1€1)
<

OFS: not Shovtest pati o(en

(sssP)
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Recitation 10

Lecture Summary

Graphs and representations
Graph Problems

Breadth First Search
Depth First Search

Exercises

1. Write the adjacency list and adjacency matrix representations for the graph below.

()0

Given a directed graph G, construct and analyze the runtime of an algorithm to create graph
G* which is identical to G but with all the edges reversed. Solve for both an adjacency list
and adjacency matrix representation.

.- Describe how to implement BFS using a QUEUE as the main data structure. Remember that

a QUEUE supports the enqueue and dequeue operations.

. Describe how to implement DFS using a STACK as the main data structure. Remember that

a STACK supports the push and pop operations.

. Given an unweighted graph G = (V, E') in which some edges are red and some are blue, find

a path from s to ¢ with the minimal number of red edges.



ADJ. LIST: AD3I. MATRIX:
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- Pvsh
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O(i1er)
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ions Rec 11
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then 2wd, +hen (st
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Recitation 11

Lecture Summary

» Connectivity
 Strong connectivity

 Kosaraju-Sharir (ks)

Exercises

1. Design an algorithm to build the condensation graph G = (Vi, E¢) of G = (V, E).

2. Cycle Detection ‘agf\gfuewce (same hodes/edges)

(a) Prove that Go = G iff G is acyclic. > muss prove botw chireciions:

(b) Explain how to detect a cycle in a directed graph in linear time.

*(c) Explain how to detect a cycle in a directed graph using only a single Full-DFS.

*‘3. There are n lock boxes and m keys. Each box has a distinct lock, so each key can open
exactly one box. There’s at least one copy of each box’s key, but for some boxes there may
be multiple copies of the key. Someone put all keys in the boxes and locked them up, but
luckily they made a note of which keys are stored in each box. Keys and boxes are numbered
so that we know which box is opened by each key. Some boxes contain no keys while others
contain multiple keys. Boxes can also be forced open with a rusty crowbar. Design an
algorithm to find the smallest set .S of boxes that you need to force open in order to open all
the other boxes.




@ APPROACLH:

*vun Kesaraju-Sharir = now each node marked wi leader & we kwnow the SCCs
e iterate ihrough nooles & check leader, crea+e wode for each unique leader. O(Ivl)

e iterate Harough edges vV, add o Geon if leader of w % 1eader of v Ofler)

overall: O l(ivi+I1€1)

1[}}
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b) run KS. cweck € Llv)z=v for an wv.

i _wvot, tnere is 3 cycie blc not every node s IS own leader less efficient blc KS takes

2 cycies of OFs.

* can 2i1so check f # wodes in 6 & Geon is equal.

4 o) Single foull DFs: cuweck 2active vs. Finiswed For wnodes.

D—0 O0-®

if _an edge goes back +o 2 visited bout unfinished wnode, l\@/ \6"

that wnode s an ancestor in DOFs 4ree & Fforms cycle. only becomes Finished wnen

21l paths have been gone +o

*#® creare graph 6 where:

G-
nodes: boxes \ 2
O~ o O«0o
edges: Connect Lav f U contains 2 key that opens v. \O./ NO"
-~ /
observe within SCCS, once owne S unlocked, you have Hewm 2il. ’O\\O
00"
ron KS, wmake Geon. Geon:
o) o) for thes, breaking
Count wnodes w! indegree = O (source wnodes) \‘OI cpen 18 2 -5 3 can

be opened.
retorn. Count
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Lecture Summary

Reduction
Turing / many-one reductions
Graph duplication

Self-reduction

Exercises: Ash’s Archipelago Adventure

Ash and his Pokémon are on vacation in the Orange Islands, represented as an undirected graph

G —

(V, E). Each vertex is an island, and each edge is a route that can be traversed in either

direction. Each route {u, v} costs a given positive integer number ¢, , of Power Points (PP) to
navigate. Everyone is currently on Shamouti Island, and some of Ash’s Pokémon want to go to
different islands. Help Ash’s Pokémon reach their desired destinations.

1.

® 2.

@ 3.

Totodile has k£ PP to spend and wants to go to Tangelo Island. Design an O(k|E|) time
algorithm to decide whether Totodile can reach Tangelo Island.

Ducklett has & PP to spend and wants to go to Tarroco Island. Ducklett can either swim
across a route {u,v} by spending ¢, PP, or fly over a route by spending 1 PP, regardless
of ¢, ,. However, after flying, Ducklett must rest and cannot fly again until after swimming
across another route. Design an O(k|E|) time algorithm to decide whether Ducklett can
reach Tarroco Island.

Squirtle and Fletchling want to go to Trovita Island and can each spend at most k£ PP. Squirtle
can swim (and carry Fletchling) across a route {u, v} by spending ¢, , PP. Fletchling can fly
(and carry Squirtle) over a route {u, v} by spending 5 PP, regardless of ¢, ,. However, after
flying, Fletchling must rest and cannot fly again until after being carried over a route. Design
an O(k*|E|) time algorithm to decide whether Squirtle and Fletchling can reach Trovita
Island.
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Lecture Summary

* Priority Queues
* Heaps

* Heap sort

Exercises

1. Practice with heaps:

(a) Draw the compact binary tree associated with the array

(b) Turn it into a max heap via linear time bottom-up heap-ification.
(¢) Run insert (9).

(d) Run insert (4).

() Run delete_max.

(f) Run delete_max again.

2. How would you find the minimum element contained in a max heap?
3. How long would it take to convert a max heap to a min heap?

4. Top-k Leaderboard: In order to maintain a Tetris leaderboard, Alice would like to keep
track of the & highest-scoring players, but does not care about the ranking of those players
as long as they are the highest-scoring set of & players. Scores update whenever a new game
is finished. At any given point in time, the highest-scoring player may be disqualified and
have their score removed from the leaderboard.

Alice is requesting a data structure that would allow her to efficiently maintain her leader-
board. Assuming a total of n players, she would like to support the following operations:
* insert: insert players and their scores to the data structure in O(logn)

* remove: remove the highest-scoring player and their score from the data structure in
O(logn) time
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* build: given an initial array of n players and their scores, construct the data structure
in O(nlog k) time

* highest-ranking-k: return the highest-scoring set of k players, as a pointer to an
array containing these players, in O(1) time

Note that there is not enough time to construct the desired array of k players (which would
take O(k) time), but it is sufficient to return a pointer to an array that has already been
constructed as a part of the data structure, which would only take O(1) time. Also, recall
that you must support insertion of new players in O(log n) time, and deletion of the highest-
scoring player in O(log n) time.

5. Proximate Sorting: An array of distinct integers is k-proximate if every integer of the array
is at most k places away from its place in the array after being sorted, i.e., if the ¢th integer
of the unsorted input array is the jth largest integer contained in the array, then |i — j| < k.
In this problem, we will show how to sort a k-proximate array faster than ©(n logn).

(a) Prove that insertion sort (as presented in this class, without any changes) will sort a
k-proximate array in O(nk) time.

(b) ©(nk) is asymptotically faster than ©(n?) when & = O(logn), but is not asymptot-
ically faster than ©(nlogn) when &k = (logn). Describe an algorithm to sort a k-
proximate array in O(n log k) time, which can be faster (but no slower) than ©(n logn).
Hint: Can you identify a subsequence of the array which must contain the minimum

element?
()
®) ()
) 2)
RN CTOYO) O
0
Q
b) ORS
ofeloYe
0
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d)
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creturn Hk in O0) time
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INSERT:

‘Compare Players Score 4o vroot of wmin hedp He

i€ greater: pop voot, insert new player's Score, inSert removed player into Hun-x
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musSt prove €2tk w nsert’on sort rounds Swap an item 18f+ by @ most k
Solution: To prove O(nk), we show that each of the n insertion sort rounds swap an
item left by at most O(k). In the original ordering, entries that are > 2k slots apart must

already be ordered correctly: indeed, if A[s] > A[t] butt — s > 2k, there is no way to
reverse the order of these two items while moving each at most & slots. This means that D ( kwn }

for each entry A[i] in the original order, fewer than 2k of the items A[0],..., Afi — 1]
are greater than A[:]. Thus, on round ¢ of insertion sort when A[i] is swapped into
place, fewer than 2k swaps are required, so round 7 requires O(k) time. Therefore, for

worst-case O(n) rounds of insertion sort, the total time is O(nk).
It’s possible to prove a stronger bound: that a; = A[i] is swapped at most & times in

round ¢ (instead of 2k). This is a bit subtle: the final sorted index of a; is at most & slots
away from 4 by the k-proximate assumption, but a; might not move to its final position

immediately, but may move past its final sorted position and then be bumped to the
right in future rounds. Suppose for contradiction a loop swaps the pth largest item A[i]

to the left by more than k to position p’ < i — k, past at least k items larger than A[z].
Since A is k-proximate, i — p < k, i.e. 1 — k < p, so p’ < p. Thus at least one item
less than A[i] must exist to the right of A[:]. Let A[j] be the smallest such item, the gth

largest item in sorted order. A[j] is smaller than & + 1 items to the left of A[j], and no
item to the right of A[j] is smaller than A[j],soq¢ < j — (k+1),ie. j —q¢ > k+ 1.

But A is k-proximate, so j — g < k, a contradiction.

Solution: We perform a variant of heapsort, where the heap only stores k + 1 items

at a time. Build a min-heap H out of A[0], ..., A[k — 1]. Then, repeatedly, insert the 20 _obi i onl K of Crom tavcae t

sinput 2reray A

° first K LIiS. MUSt Contdin min el

o heapify it (min)

e B> delete min on A

13 6

. ) _ i i+ k
next item from A into H, and then store H.delete min () as the next entry in sorted
order. So we first call H.insert (A[k]) followed by B[0] = H.delete min(); I Ist 1 k “) I
the next iteration calls H. insert (A[k+1]) and B[1] = H.delete_min(); and so ‘ \
on. (When there are no more entries to insert into H, do only the delete_min step.)
B is the sorted answer. Find min
This algorithm works because the ith smallest entry in array A must be one of A[0], .l:
A[1],..., Ali+k] by the k-proximate assumption, and by the time we’re about to write
Bli], all of these entries have already been inserted into H (and some also deleted). As- defet+e.msa
suming entries B[0], ..., B[i —1] are correct (by induction), this means the ith smallest |
value is still in H while all smaller values have already been removed, so this ith v
smallest value is in fact H.delete_min (), and Bli] gets filled correctly. Each heap 0 /
operation takes time O(log k) because there are at most k + 1 items in the heap, so the

n insertions and n deletions take O(n log k) total.

S retorn 8
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Lecture Summary

* Dijkstra’s Algorithm
e Why Dijkstra works

* Dijkstra Runtime Analysis

Exercises

1. Using the graph below, apply Dijkstra’s algorithm from source node « to find shortest paths.

PREE

(a) What are the current d[v] values right before the second vertex is deleted from the
queue? What about before the fourth vertex is deleted?

(b) What is the final order of nodes added to the visited set? Are there multiple possible
orders?

(c) For which two vertices v does d[v] change more than once? Recall the first change for
each vertex is from oo to a finite number.
¥ multsple Sources wl! Single Source R.T
2. In a graph G = (V, E) with positive edge weights, there are special nodes, s1, Sa, ..., Sk,
where k is not necessarily a constant. For every node v in the graph, we want to find the
distance from the closest special node to v. Describe a O(|E| + |V |log |V|) algorithm to do
SO.

3. CIA officer Mary Cathison needs to drive to meet with an informant across an unwelcome
city. Some roads in the city are equipped with government surveillance cameras, and Mary
will be detained if cameras from more than one road observe her car on the way to her
informant. Mary has a map describing the length of each road and knows which roads have
surveillance cameras. Help Mary find the shortest drive to reach her informant, being seen
by at most one surveillance camera along the way.
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* @

4. Ash is trying to cycle from Pallet Town to Viridian City without destroying Misty’s bike.

o)

b)

<)

For every trail e in the area, he knows the probability p(e) of destroying the bike if he cycles
along e. Help Ash find the safest path to Viridian City (the path that minimizes his probabil-
ity of destroying the bike). Assume that all probabilities are independent and that arithmetic
operations take constant time.

a
5)
d
dv]
a[ooo o 0 0 o
bl 2 2 2 2 2 4 before 2nd veriex is dele+ed from queve-
c|we 5§ 5§ 5 5 5
d]ee s 5§ 4 y y y i“’ol b:2,c: 02, d: g5, e:00, P:vﬂg
e |°® e 3 3 3 3 3
flowns s s g
L T B
a p e A ¢ I

a,b,e,d, f c

d 8 €
s
e "\ f’\o/ ®
=03

Super node S*

Connect S* +o each §,... Sk wl edges of weight O

run  dijktras From SH

X MmultsPle Sources wl! Single Source R T
IVI +1 wodes, |EI+k edges « k could be =2l E edges

O(IvViteglvi+ 1€ +1vi) = O (Ivileg|vi+ IEL)
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@ se+ edge weight +o I-p
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Lecture Summary

* Weighted (and in particular negative-weighted) edges complicate SSSP
* Bellman-Ford approach

¢ DAG relaxation

Exercises

1. Round 7 of Bellman-Ford

Let G be a weighted graph with vertices s and v, and assume there is a shortest path from
s to v that uses at most 7 edges. Prove that when running Bellman-Ford, after relaxing the
edges into the ith layer of the duplicated graph, the shortest distance to v is already known.

2. Phunmacks

Alice, Bob, and Casey are best friends who live in different corners of a rural school district.
One day, they decide to meet at some intersection in the district to play tee-ball. Each child
will bike to the meeting location from their home along dirt roads. Each road segment
between intersections has a level of fun associated with biking along it in a certain direction.
Road fun-ness may be positive, but could also be be negative, e.g., when a road is difficult
to traverse in a given direction, or passes by a scary dog, etc.

The children would like to maximize their total fun, which accumulates additively over the
road segments they individually bike over. Help the children plan their day by finding an
optimal tee-ball location, or return a continuously-fun bike loop in their district, if one exists.
You may assume that each child can reach any road in the district by bike.

3. Ez Money

Your friend Mash Coney was shopping online and noticed that someone was selling 3 Super
Potions in exchange for 5 Tofu Sandwiches. She saw another deal selling 4 Poké Balls for 1
Super Potion, and another one selling 1 Tofu Sandwich for 2 Poké Balls.

Mash worked out the math and realized that if she invests 5 Tofu Sandwiches, she can ex-
change them for 3 Super Potions, exchange those for 12 Poké Balls, and finally get 6 Tofu
Sandwiches. She just got a free Tofu Sandwich! Notice that this sort of opportunity would
not exist if the second deal were 3 Poké Balls for 1 Super Potion.
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Sadly, Mash can only handle the business side', so she recruits you for your 6.006 expertise
to code an algorithm that will find these arbitrage opportunities from online stores.

Given an array D of n deals, describe an O(n?) time algorithm to find any opportunity that
leaves you with more of the same kind of item than you started with. Each deal is of the form
(A, z, B,y), indicating that someone will sell you y number of commodity B in exchange
for x number of commodity A, where and x and y are positive integers.

Mash is willing to initially invest any amount of any commodity, as long as she gets more
of them back. Your algorithm should return an array of commodities in the order you would
execute the exchanges (e.g., [Tofu Sandwich, Super Potion, Poké Ball, Tofu
Sandwich]), or None if no such opportunity exists. Briefly justify the correctness of your
algorithm, and argue the runtime.

PF by Ino:
P(i) ;= for any v S.+. there is 2 Shortest path from s +o v Witk =i edges, afier reiaxing
al edges into level i, d (se. vi) = &'(s.v)

B.C. izO-> SP is just wnode itseif. d(S..S0)z0=d(s.S)
INO STEP: 2Ssume +rue for i-I. Consider any S->...3vav < i edges.

i€ Swhortest path <i edges, already know d(Se, Vio) =d(s,v) by I.u.

- felaxing V.--.i’V.' keeps i+ same Vv
- if Sheortest path takes exacily i edges, cownsider |2st edge uav
S>... U giveS Shortest path 4o L. i) 18n path, so d (S, U;n) = S (S, u) by I.H.

‘relaxing Wi = Vi gives  d(Se, i) = I (S.v)
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ron BFS Ffrom 2. cweck Ffor wneg. cycles 3 rejurn f exiSt.

otherwise run from b & ¢ Ffor an u,

computre d(a,v) + f(b,o) + T(c,v) & pick swmalles+ v

"https://i.imgur.com/gl3Zcle.png
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® set @(v) +o be SSSP d(v) fFrom Some Start wnode.
then, new weight Ffor (uv,v) +s

W' (u,v) = wlv,v) + F(v) - J(s) non-negqat+e, or eise dI(v)>d(v) + w(u,v) 3

non-neq. bl/c SP to U Shouldnt d s ne+ acroally shoriest p2ths
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Lecture Summary
* SSSP recap

» APSP via SSSP |V/| times

* Johnson’s algorithm

Exercises

1. Johnson’s practice

Consider the following graph. Show that if we were to increment all edge weights by +5
to make them non-negative, shortest paths would not be preserved. Then, using a proper
reweighting strategy, run Johnson’s algorithm to get an APSP matrix.

_ -s
5 e Shoviest paths:
a. Ssa 0
b: S»a>b -S

C: s9a3bac O

Ad: Ssan pad -l

supernode

+S: Ex-

SP aad =7 (aad) NOT peeserveol.

@ a b ¢ d transform back: a b c d
alO 0 o o - Qs+ D(F) alO -s o -
bl|*® o o © ) bl 0 5 4
C =@ o© O o2 Cc oo oo O ©°
d|lee 0o O O Adloe oo 1 O
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2. Twinleaf Travels

Ash is walking from Sunyshore City to Twinleaf Town. He wants to take the shortest path,
but he can only walk m miles before needing to rest at a Pokémon Center.

The road network is provided as a weighted undirected graph G = (V, £/, w) along with
the subset P~ C V" of vertices that have Pokémon Centers. Each weight w(e) denotes the
positive length in miles of road e. The goal is to find a shortest path from node s € V' to
node ¢ € V that does not travel more than m miles between Pokémon Centers, or report that
itis not possible. Assume that s,? € P, and that the graph is a single connected component.

a c e
O
7 6 5 6
Sunyshore 1 1 Twinleaf
5 ) 6 8
h o4
b d £

(a) In the graph above, Pokémon Centers are marked with Pokéballs. Find the shortest
path from Sunyshore City to Twinleaf Town when m = oo and also when m = 10.

(b) Give an algorithm to solve the general problem with arbitrary m and arbitrary G, and
justify its runtime.

3. Useless Nodes

Let G = (V, F) be a directed weighted graph with no negative cycles. We say a vertex v is
useful if there are two vertices s, t # v such that v is on a minimum-weight path from s to t.
(If there are multiple minimum-weight paths from s to ¢, v only has to be on one of them.)

Describe an O(|V'|)-time algorithm to determine exactly which vertices of G are useful.
e ———
¥ loks of edges = complete grapn IVI?
@2 m:wo:s>a3bIAS>SC3e D¢t

* m: |O:

)  ron  Johwsons +o get J(u.v) for every u,v pair *
build 6’ with jost centers, make edge b/t x & y if J(x.y) ¢ m

ron Oijkstras on wew graph G’ bit s 8 +,

@) vtz ful

\Q Ky

@ @ OiO‘\’O outer FL: Il of vl
inner: 2l of Jul?

run Tohnsons, get APSP for v for 21l p2irs & ,b, cnheck

TEST 2 I (a.v) + S (v.b) = F(a,b). if .+ does Ffor 2ny a,b. Vv iS wnoi useless.
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Lecture Summary
1. Greedy Algorithm / Proof Template

¢ Identify the Greedy Choice
* Prove the corresponding Greedy Choice Property
» Prove the corresponding Self-Reduction

» Algorithm: order input, then iterate GC
2. Activity Selection Problem

3. Activity Scheduling Problem

Exercises

Exercise 1: Given a set X = {zg < 21 < --- < x,,_1} of points in the real line, find minimum
number of intervals of unit length that cover all points (e.g. the interval [1.25,2.25] covers the point
2.0).

As an example consider the points, {1.9,2.4,3.7,4.6,8.1,9.8}. Then, the minimum number of unit
intervals is 4 as shown by the red, green, blue, and black intervals as shown in the figure below.

oo ©

Hint: What observation can you make of the optimal solution?

Exercise 2: We are given n processes. Each process ¢ takes ¢; time to complete. We need to
schedule processes sequentially, i.e., find a permutation o such that process o[1] is scheduled before
o[2], which is scheduled before 3], and so on. The finishing time of process ¢[i] is then

Copi = Z tolj]
j=1

Design an algorithm that finds a permutation o such that the average finishing time is minimized.
The average finishing time is defined as

1 mn
- ; Colil
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Exercise 3: You have come across a treasure consisting of several different types of precious
metals. The treasure chest holds containers of n metals, where the ¢-th container has weight w;
and total value v;. Unfortunately, you can only carry a total weight of 1/ - otherwise, you would
just take the entire treasure chest with you! Determine how much weight z; of metal you will take
from each container (note that necessarily 0 < z; < w;) in order to maximize the total value of the
treasure you take.

For example, if W = 2, w; = 2,v; = 2, wy = 1,v5 = 1, then you could take 1.5 unit weight of
metal 1 and 0.5 unit weight of metal 2, for a total value of 2.

Exercise 4: Given a value V/, if we want to make a change for $V/, and we have an infinite supply
of each of the denominations in currency, i.e., we have an infinite supply of { $1, $5, $10, $25 }
valued coins/notes, what is the minimum number of coins and/or notes needed to make the change?

~
[ ]

0)

o+

N 6C: choose interval Starting from ISt point: [xeo, Xo+1]
2) GCP: fwere iS an optimal Solvn  including [Xo, xo +1]
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CoRRECTNESS: - .. Stong indl ,
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Lecture Summary

1. Prefix Free Codes

2. Huffman Algorithm

Exercises

1. Alice wants to throw a party and she is trying to decide who to invite. She has n people
to choose from, and she knows which pairs of these people know each other. She wants to
invite as many people as possible subject to the constraint:

For each guest, there should be at least five other guests that they already know.

Describe and analyze an O(n?)-time algorithm that computes the largest possible number of
guests Alice can invite, given a list of pairs, where a pair (¢, j) represents guest number ¢ and
guest number j knowing each other.

2. A wiggle sequence is a sequence where the differences between successive numbers strictly
alternate between positive and negative. The first difference (if one exists) may be either
positive or negative. A sequence with one element and a sequence with two non-equal
elements are trivially wiggle sequences. For example, the array [1,7,4,9,2,5] is a wiggle
sequence, but the array [1, 7,4, 5, 7] is not.

Given a integer array A of length n > 0 with no consecutive equal elements, we want to find
the length of the longest wiggle subsequence.!

(a) Prove that there is an optimal solution (i.e. max-length wiggle subsequence)
that includes A[0)].

(b) We say that A starts by increasing if A[0] < A[1] or A has only one element.
Prove that if A starts by increasing, every optimal solution which includes A[0]
also starts by increasing.

(c) Give a greedy algorithm to compute the longest wiggle subsequence, prove its
correctness, and analyze its runtime.

'A subsequence of A contains a subset of the elements of A, in the order they appear in A, but not necessarily
consecutive.
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EX.

DyNAMIC PROGRAMMING

Coins Row
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coans([l,z.lo.o.tj,,

Vi: RecursSion m2ax
S+coins([2.10.6,23)
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- ccursive calis don't repeat work
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¢

SRTROT: Ffoliow +his Format! % = DP +able | ‘1 l TI ° , q
U Yoins (L23)
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SuePrOBLEM: X (i) = max value you can get from ALi:]

RelaTeE: relate X(i)z max Ex[m), Alil+ x(i+2) §

ToefoLoGicAL: X(i) depends on strictly largee i

B8ase Case: x(w-1) = Aln-1] bounding
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ouvTpuT: % (0)

RunTime: D(wn)
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Lecture Summary
» Exponential recursive approach
* Memoization so we don’t keep recomputing the same thing

* Implementing the same solution without recursion

SRTBOT framework

Exercise 1: Simplified Blackjack

We define a simplified version of the game blackjack between one player and a dealer. A deck
of cards is an ordered sequence of n cards D = (cy,...,c,_1), where each card ¢; is an integer
between 1 and 10 inclusive.

Blackjack is played in rounds. In one round, the dealer will draw the top two cards from the deck
(initially ¢y and c7), then the player will draw the next two cards (initially ¢, and c3), and then the
player may either choose to draw or not draw one additional card.

The player wins the round if the value of the player’s hand (i.e., the sum of cards drawn by the
player in the round) is more than the value of the dealer’s hand, and at most 21. The game ends
when a round ends with fewer than 5 cards remaining in the deck.

Given a deck of n cards with a known order, describe an O(n)-time algorithm to determine the
maximum number of rounds the player can win by playing simplified blackjack with the deck.

dealer
—
eEx:(1 5 & 7 8 3 4 s .
- I if Win
wild.e)= 75 i¢ 1ose
S: (i) max # roundsS +hat can be won Starting @ i
wlei+Ciey, Cit2 + Ciaz) +x[i+4] & whether we won when not +aking extkra cavd
R: x(i)z max\wlCi+Cisi, Citz +Cits +Civu) +%[i+ST ¢ if we win when drawing 2dddtional cawd

T: x(i) only depends on sStrickHy greater. xli) depend on x(j) where i<j
B: i>n-5 = x(i)=0
0: x(o)

T: O(n) scbproblems, each takes cowstant +ime
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Exercise 2: Wafer Power

A start-up is working on a new electronic circuit design for highly-parallel computing. Evenly-
spaced along the perimeter of a circular wafer sits n ports for either a power source or a computing
unit. Each computing unit needs energy from a power source, transferred between ports via a
wire etched into the top surface of the wafer. However, if a computing unit is connected to a power
source that is too close, the power can overload and destroy the circuit. Further, no two etched wires
may cross each other. The circuit designer needs an automated way to evaluate the effectiveness
of different designs, and has asked you for help. Given an arrangement of power sources and
computing units plugged into the n ports, describe an O(n?)-time dynamic programming algorithm
to match computing units to power sources by etching non-crossing wires between them onto the
surface of the wafer, in order to maximize the number of powered computing units, where wires
may not connect two adjacent ports along the perimeter. Below is an example wafer, with non-
crossing wires connecting computing units (white) to power sources (black).

A=(0.0,1,1, 0, 0)

X(o, n) &includes a1l pts

1: %(t,n) & dont connect O Wl 2nything
2: l+x(1, k)+ xlkel, n) &connect O w| some k

S: X(i,j) = max # Connections 2among ports From [i,;)
(x(-’n,j), Oo(wn)
R: X(i,j)= max\l+x(iti, k) +x(k+t,j), i+2<€kecj, AloTFALk]
x(1n)3 .
x(0.m)= max (Eil-oxu.kh- x(k+t,n) 122 En-1, A\'-O-J*Af-“jg) & have +o handie blc cicculan
n

—I°SS°|I\ 'Il;’
T x(,5) only depends own x(i') ') where j'-i' < j-i O(n?) €Ml iw

T: O(n3) = each step O(nY, O(n2) total £l in
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S: Tli.j)=18n of tcs of AlLi:n]l, B8Lj:m) THEIR - H)
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fe.s.10.6.2,97 » [S.6.72.97
(os:Su )
S: T(ij)=1em of Lis of Ali:n] wl \-1gjcia nombers larger
El-\-‘rli-vl.j) f jz-1 o ALII>AL;)
R: Tliijl=wax ¢ T(i+1, j)
0: T(o, -1)
Alternatre:
S: T(i)=1em of LIS of A(i:n] uSing A(i]

R: T()= l+max f,"’(j). A(i)cAL;) %
i< jewn

TIH|E[ 1|R
H =)
A °
o
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T Ololo
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+han AL




Introduction to Algorithms: 6.1210 Recitation 20
Massachusetts Institute of Technology
Brynmor Chapman, Srini Devadas, Henry Corrigan-Gibbs, Will Leiserson

Recitation 20

Lecture Summary

* Longest Common Sub-Sequence (LCS) problem

* Longest Increasing Sub-Sequence (LIS) problem

Exercise 1: Edit Distance

A plagiarism detector needs to detect the similarity between two texts, string A and string B. One
measure of similarity is called edit distance, the minimum number of edits that will transform
string A into string B. An edit may be one of three operations: delete a character of A, replace
a character of A with another letter, and insert a character anywhere in A. Describe a O(|A||B])
time algorithm to compute the edit distance between A and B.

Exercise 2: Arithmetic Parenthesization

You are given an arithmetic expression without any parentheses: ag *1 a1 *9 Go -+ *,-1 Gp—1,
where each q; is an integer and each operator *; € {+, x }. Describe a dynamic program to place
parentheses (with correct syntax) to maximize the value of the resulting expression. For example:

8+4x3+5 — (8 +4) x (3+5) = 96
8+ (—4) x 3+ (=5) — 8+ ((—4) x (3+ (=5))) = 16
®©  unaveo WAITED
WaATE O
NA:'TED

St xli, )z min # edits Yo turn ACL:1 2o BLi:), OsislAl, Otj<|8]
s(ie1, j+1) if ALiI=BC(S)

TRTONN GR

: I+x (i, j#1)
0: x(0, n max)

T:0O(n2) Subproblems, Oln) per Svbproblem = O(n3)
@ (e %, A0 % 2 Qz)('#n-(am-t)
Hint 11 x(i,j) depends on x (i, k), x(k,j) for bl+ i & j

Hint 2: build 2 seperare +2blesS for min & max. *hey will use eachkh orher

S: x(i.j, Opt) = opt value 2+i2inable from i ki+1 Oisg--- %j. O Ositjsn opt€ fmin,max3



W26 DP wl Shortest paths

DAG sep:

Va
S: x(v)z Aistance +o v

R: x(v) = min § x(UY+wlu,v) | vv eR3

T: reverse +op order of G

B8: x(s)= o
O: whot +2ble

T: OQivi+i€l)

8F oef:

S: x(v.k): weight of SP From S +o v USing
minEx(L.k-1) +w(v.v) |u,veE

R: %(veik): ming xX(v, k-1)

8: x(s.0):=0 x(v.0)=02 for VES

Fcovo WARSHALL: APSP @—.O

vz il.z,... ,n3 2rbitrary order.‘ns
S: d(u,v, k)= SP vsing Only vertices in iu,viUi':Z»-u

alv,v, k-1)
R: d(v.v. k)= min)d(v.k, k-1) +d(k.v, k=1)

T: oliv13).0(1)

GeENERAL DP  TiPs:

* define 2 Suberoblem that captures what Yoo

( * try to make recursive relation

(0]

#solve going right

\ R

£ k edges

dlu,s)

W

k3

weed

® © @
<0
[N\e
@ ® <l
@

k=2

(pref:xISufEix, picking 2 o+ +o Si:ce)
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Lecture Summary

1. Multiple examples to solve shortest path using Dynamic Programming.
2. SSSP in DAG using Dynamic Programming.
3. Bellman Ford using Dynamic Programming.

4. New algorithm for APSP: Floyd—Warshall. It takes in O(]V/|?) time and matches Johnson’s
runtime for dense graphs.

Exercise 1: Bowling along Shortest Paths

There are n bowling pins in a row, and the ith pin has an associated value v; for7 € {1,....n}. You
can knock down pins individually or in pﬁs: knocking pin ¢ down individually earns v; points,
and knocking pins 7 — 1 and 7 down together earns v;_; - v; points. A pin can only be counted once,
and you don’t have to knock down all the pins (maybe v, < 0).

a) Design a DP algorithm to find the maximum possible score, and analyze its runtime.

b) Design an algorithm that solves the same problem by constructing a graph and then running
a single source shortest path algorithm. Analyze its runtime.

Exercise 2: Counting Shortest Paths

Given an undirected weighted graph G = (V, F/,w) with n vertices and m > n edges, and a vertex
s, describe an O(nm) time algorithm to compute the number of shortest paths from s to each other
vertex v € V. Assume that all cycles have positive weight, but note that edges may have negative
weight.
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Exercise 3: Jogging on a Budget

Your new fitness tracker has been helping you plan a jogging route through town. Starting at home
s, you want to run exactly 5 miles, after which you will be too tired to jog and will call your
favorite cow-themed ride-sharing service Uder to take you back home.

The tracker has a built-in town map with n intersections and m two-way road segments {u, v} of
length w(wu, v), which is always a multiple of 0.1 miles. Using GPS, the innovative device only
updates your jogging progress whenever you fully traverse a road segment from one intersection to
the other. The tracker also has the Uder app, listing the price of being picked up at an intersection
v as p, Moo-lah.

Design an O(n + m) time dynamic program to choose a jogging route that minimizes the amount
of Moo-lah you will have to spend to ride home after running exactly 5 miles.

@3) S

T(i-1+ALi]) & 2dd
P T()= max $ Tli-2)+ ALd- ACisr) € moultiply

@O

b)

T(i)smax B of points we can get from Alo:i],

T(i-1) & move onto next step
decreasing

T(0):0, Th)= max‘t' o, Afo33

T(w)

: .o
O(n) e °

-max(Vi,0) V,- ‘

ST BB o s
\/’ \/‘

=-Vi-Va
SV3-vy

*Cawn Choose wnot +o prck 1he ver+ex — -min(o, Vi)

ron DAG SP

fx(v)
—
) ylv.k) z weight ofF Sp from s o v UsSing

2) x(v.k)l= # Shortest paths from S 4o v using exaciiy k edges

: Felv)zminFmmEulu,k-1] +u(u.v) [ (V. VIEE

i¢ it Sat’sPies our k—l
xlv.kVz Tx(u.k-1) [o,veE 2 di(w)+ wlv,v)=dilv)

EXACTLY k edges

Otisn

Max pointS we could’'ve gotrten @ k.

vt

S Vi Vg o+ oo

‘IO 18 ')l

Jelv) depends on dk-lw), x(v,k) depends on dk-lu), Tilv), x(u,k-=1)

otners
kKzo: do(s):=0, do(v) =00

x(s.0)z1, x(v.0):zp

o
$P 1o ? thers

itself

Ownly cons'der
the paths
+hat create
+we SPs
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SANOWICH CuTTING:

8

S: SIR)= max val Atainable for Sawnduwich of 1ength £ 2:1
3:13

R: max vii) + S(R-i) u: 20
§:25

T dccreas:ns H

8: s(o):=o

0: s(v)

T: L subproblems, each O(L) = O(rL2?)

Sueser Sum: Azloo,...,0n-7] positive ints Ex: A:[2.5,7,8,97 L:=2)
L=2S x

-iS there 3 subset of A 2t Sums to L

S: x(L.i)= does subset of ACLi:) Sum +o £2 Y/N (deciSion problem)
X(L,i+1) move on & don‘t +2ke

R: x(&.i)= ongx(z-a:. f+1) if a;€Q move on & t2ke i

+
0 2rr2y indeX
T: inceeasing i o 7] %k when depending On input value,
True i 2=0 d
8: x(R.n)= ( False o.w. u can become big
y2ralt
o: x(L,0) > Psevoo PoLy
T: O(nL) L a

PorvnomiAL Time:
time € O(1) degree polynomial in input size (measured in words)
Psevoo PorvnomiAL Time:

time € O(1) degree polynomial in input size & integer inpoks (2ctu2) R.T: can end owp Exponential)
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Lecture Review

* Polynomial vs Pseudo-Polynomial Time
» Sandwich Cutting
* Subset Sum

Input: Set of n positive integers A[1,...,n| and a target 7.

Output: Is there subset A’ C Asuchthat) . a="1T?

Can solve with dynamic programming in O(n7’) time

The algorithm is only efficient in the special case where 7' is polynomial in the length
of the input, but in general it could be exponential.

Exercises

We’ll look at several problems related to Subset Sum.

1. Describe an algorithm to solve Partition: Given a set of n positive integers A, determine
whether A can be partitioned into two subsets A; and A, of equal sum.

For example, A = {1,3,4,12,19,21,22} can be partitioned into A; = {1,19,21} and
Ay = {3,4, 12,22}, which both have sum 41.

2. Adapt the Subset Sum algorithm to work on sets containing negative numbers.

3. 0-1 Knapsack.

We are given a capacity S and a list of n items, which each have a size s; and a value v;. The
goal is to find the subset of items with total size at most S that has maximum total value. As
before, “0-1” means that we can take each item only zero or one times; there’s only a single
instance of each item.

Describe an O(n.S) time algorithm to solve 0-1 Knapsack.

We’ve made CoffeeScript visualizers solving Subset Sum and 0-1 Knapsack:

https://codepen.io/mit6006/pen/JeBvKe
https://codepen.io0/mit6006/pen/VVEPod



sSame as
Svbse+
Som
probiem

fun Subset Sum on A with +2arget 2
sum of Som of
i true, then exist 2 wnalves neqative posirive
[} a;
S: x(£,i)z some svbse+ of ALi:) sums 4o £, Osisn, LQmin S L Amax
x(L,i+1)
R: xlR,i)= ORI x(R-0i, i+1) if Lmin S0 -a; £ Lz
T: incrgzs;ma ‘
True ¢ 220
8: x(R.nwY= ( False o.w.
o: x(L,0)
T: tmax-tmin = range of table we must cover = Zlail=S - O(ns)

O-1 kwnapsack: size S s.4. can }ake items up o this Size

Ex:

Mmax val of tems

s=[s.10, 12,7, 67
va[io, 18, 4, 8,6]

x(s, i) = m2ax val we can pack into kn2psack of Size S USing itews Starting @

O¢sis¢n, OEsES
Vi+x(S-Si,i+1) if S2S; ¢ +ake item
X(s.i)= max x(s. i+ 1)

increadsing i

xX(S,n) =0 (empty Suffix)

: x(S.,0)

: O(nS)
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4. Close Partition. (optional) Given a set of n positive integers A, describe an algorithm to
partition A into two subsets A; and A, such that the absolute difference | S A=Y A
between their sums is minimized.

5. (optional) Solve Close Partition (from the previous problem) by turning it into an instance
of 0-1 Knapsack. In other words, describe a polynomial-time reduction from Close Partition
to 0-1 Knapsack.

6. Unbounded Knapsack. (optional) Unbounded Knapsack is the same as 0-1 Knapsack,
except that there are many copies of each item available—you can take as many as you like.
Design an algorithm to solve this problem.
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Lecture Summary

» Decision problems and problem classes
* Nondeterministic Polynomial Time NP
* Reductions

* NP-hardness

Exercises E

1. In an undirected graph, a cligue is a set of vertices such that every pair of them is connected
by an edge. Given an undirected graph G = (V, E) and an integer k, CLIQUE asks whether
(& has a clique of size k.

Show that CLIQUE is in NP by designing a verifier for it: specify what the certificates
represent, describe the verifier itself, analyze its runtime, and argue that the verifier takes
polynomial time in 7, the size of the input.

2. Consider two decision problems problems A and B. Assume there is a polynomial time
reduction from A to B which takes an instance of A of size n and transforms it into an
instance of B of size O(n?). Assume that 53 is in NP, and instances of B of size m have

certificates of length O(m?). Circle all necessarily true statements: a—Azeé,
n w2
(n2)3:-nt

(a) Instances of A of size n have certificates of length O(n?).
(b) Instances of A of size n have certificates of length O(n?).

@ Instances of A of size n have certificates of length O(n®).
(d) Bis NP-complete. x— steesnt menton Ne-hard

Acanbe solved in EXPTIME. = protiems in AP 2re 2150 in Expiime

O CLIQUE: oloces i+here Eexist fully cennected graph of Size k
CERTIFICATE: S+t U of k wnodesS Hiaat forms 2 clique
VERIFICR: check +ha+ lulzk & check for 211 u,ve U, L,veE

0(k3) € O(n?) o Polﬁv\am.'al +imme
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)¢

3. For decision problems A B, and C, assume A <p B and B <p C. If B is NP-Complete,
select all statements that must be true: o b

" w? wn'ee (neeoyts
A Sp C v redouctions 2w~ +transitive!

Ais INNP. > 8 :s ne-complerte (MP hard 8 in NP), So A can reduce 2n~d e in NP

(C) A is NP-Hard. x can't 2SSUME B3 nything about ASpB

(d) CiS in NP X € m2y be in x +ime, but we doat know IF C €NP. Could be Smihg Further out

CiS NP—Hard. can infer hardness Ffor ASpB

4. Consider two decision problems A and B. The problem A U B asks whether its input is a
YES instance of A or a YES instance of B. Similarly, the problem A N B asks whether its
input is a YES instance of A and a YES instance of B.

Circle all necessarily true statements.

@If A, BeP,then AUB € P. YES if poly +ime Solveable, caw just Solvk boti
@DIf A, BEP,then ANB €P. Yes sowe Gosn
(C If A,B S NP, then AU B € NP. yEs: Certi€icare fells vs uhch problem 4o use & has certiftale

for ha¥ probrlem,

¥ It A, B € NP, then AN B € NP. ves

5. Recall that in PARTITION, we are given a list of numbers A and asked whether it can be
partitioned into two lists with the same sum. This problem is NP-complete.

We can define a decision problem 0-1 KNAPSACK as follows: we are given a capacity S, a
target value V', and a list of items, which each have a size s; and a value v;. We are asked
whether there’s a subset of items with total size at most S and total value at least V. (The
“0-1” in the name comes from the fact that each item can be taken zero or one times, but not
multiple times or a fractional value.)

Prove that 0-1 KNAPSACK is NP-hard by describing a reduction from PARTITION to 0-1
KNAPSACK.

@ tonstvuct reduction From PARTITION €, O-I KNAPSACK

0:1_bnassack

does there exist Subse+r ul size @ most S & vawe C ieast V

for every et A: in A, creadte item i Where S:zvizo: (ser $: 2 vi= +o ar)
Za:
S=vs=z "2

YES instance pari:tvon —— YES O-I knapSack
NO pPare'fvenn — NO 0O-l kndpSachk

YES ingtance knapsSacl —» YES pactitcon & Countrapos.
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s dlgorithms (PPosrams) Dl written (n bindvy & +2k€ Some 2drbitradry b""a’tl input

b2sicS
c2lg. 0N PArricUldr input CBn 2nswer YES, No, or loop forever
HALTING PRo@GLEM:
input: (P, x)
21g  inpout
out: YES if P Wa1#S on X
No oiherwise
UNDECIDEABLE: problem s undecideable if there iS no 2lg that you can m2ke
fthat Solves 4h's problew
THMm: HALT is oundecideable (prove wi Diagon2lzation)
TOTALITY:
input: P é&2alg
Out: YES (f P WIS on 3l inputs
No  otherwise
Tum: +otality s undecideable
Pf: HALT =p ToTALTY é&reduce - siill must be just S hard
assume: 21g T decides totality
consStruct H, 2 decider for HALT
H(P, x):=
1) define Q(y):= ignore input. run P on x. output YES. (25 long as i+ doesnt get cavght in 02 loop)
2) return T(@) 9 whether P haits on x.
EQuiv: WTS: program s decideable, recognizeablie:
input: P, R € 2 programs 2 JifF. PF: write 21q for it
Solns
Out: YES f P8 A Output YES on Sawme inpuks WTS: prograw is oundecrdeable
NO otherwise PE: reduce fFrom HALT
THM. Equiv /s uwndecideable
PE: HALT ¢p Euiv
2ssume  2)g. E decides EQuiv
H(P, x):
1) _deeine Q(Y): *ignore inpur. vun Plx), Output VES'
decides
HALT 2) define R(Y): *ignore input, outpur YES" & 2luaysS Says yes

3) return E(Q,R)
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Computability

Exercise: Acceptance Problem

The following problem, similar to the Halting Problem, is called the Acceptance Problem.
ACCEPT
Input: a binary string, interpreted as a pair (A, x)

— A is an algorithm

— x is some other binary string
Output:

— YEs if A(z) eventually halts and outputs YES
— No otherwise, i.e. if A(z) outputs NO or doesn’t halt

(a) Prove that ACCEPT is recognizable. That is, prove that there exists an algorithm B
such that B(A, z) = YES iff ACCEPT(A, z) = YES.

(b) Prove that ACCEPT is undecidable by reducing from HALT.

DP Review

Exercise 1: Coin Row Problem Revisited

Here’s a variation on the coin row problem from the very first DP lecture: there is a row of coins
with positive integer values, and once again you want to maximize the total value of the coins you
pick up. This time, the rule is that you can only pick up a run of  consecutive coins if there are at
least  coins anywhere to the left of it that you don’t pick up.

For example, here is a row of coins, with the coins you pick up in the optimal solution circled:

HORNO ORS00
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In the optimal solution, you skip 10 and 8 so that you’re allowed to pick up both 27 and 25. But
you only skipped two coins on the left, so you aren’t allowed to also pick up 11.

Note that at » = 1, the rule says that to pick up a single coin you must have skipped a coin to its
left; in particular the first coin has to be skipped.

Design an algorithm to find the maximum value you can pick up, and that runs in O(n?) time when
there are n coins.

ACCEPTANCE:
2)  wts: can make aig. that F Al = YES Y outputsS YES., Alx)zwo /oo oop = outpuis Nolloops Forever
xcCan make 2 vecogwnizer that loops forevee
PlA.x):= ‘rov A on x. do wwat i+ does.”
b)  HALT e AccepPT
2Ssume 219 A for ACCEPT.
H(P, x):=
N tonstruet P'(Y):Ycun P on 4. output VES®

2) ron A on (P, x) if HALTS outpulS YES, o.w. = 00 loop

O] S: x[i.11= max vawe you c2n pick LUP @ CLoim i While Skipping @ 1€as+ j of ¢hem.
i-t
R: x[i, 3] = max Tk max(i-k-2.5-1,0)) +Z &  suppose last skipped coin=k.
2fFter, we picke wp K-l coins Ending w/ i-l. onty 1€ga1 F Skip 2 ik
T: x(i.j) depends on T(k.j:) for Kk<i
B8: x(0,0)s O, Tlo, j)=-o°
0: xtwn. 07

T: N2 Subproblems. D(n2) & sSmartly @val options in decr. order of k R Store cunning Sum.

Subproblems computed n Oln) = 4o+l R.T. Oln3)
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Exercise 2: Srini’s Journey Goes South

Srini is driving his JunkJet through Cityland. Cityland is a nationof 1 +2+++++n = @ cities,
arranged in an equilateral triangular lattice. The j™ city on row i is C/[i][;]. Cityland is oriented so
that one of its axes of symmetry runs due north-south, as shown in the diagram below.

-

[ Aojol

|
=1
\ N
//, N\ / N\ A
Aol (A
=2 | . o=2 )
[nzor | [ oAem ) [ AR
\ =0 / \ =-2 / \ =1 / \ 4
[ oo [ omsm [ oAm ) [ s
=2 / \ =a / \ /

=0 / \ =1

\. y

Srini starts at the northernmost city in Cityland. Each day, he drives from his current city to one
of the two cities immediately south (i.e., immediately southeast or southwest) of it, meaning that
if he’s at city C[i][j], the next day he can go to either C[i + 1|[j] or C[i + 1][j + 1]. His journey
ends when he reaches one of the n cities on Cityland’s southern border.

Each city has a disapproval score, which is an integer. The disapproval scores may be zero,
negative, or positive. The disapproval score for the j™ city on row 7 is Ai][j]. For example, if
n = 4, the disapproval scores may be as shown above.

Over all possible journeys, Srini wants to know the maximum product of disapproval scores of
the cities he visits. In our example above for the particular values of A, the maximum disapproval
score corresponds to the path marked and has value (—1)(—2)(—2)(—1) = 4.

Design an O(n?)-time Dynamic Programming algorithm that returns the cities on the path with
maximum product of disapproval scores. You may assume that all arithmetic operations take con-
stant time.

S: wfideid for Osjcizn: Tmaxli.j) & Tminli,j}) = max & min product of Subpath

ALICI) - max (Tmax(i4, 1), Tomax (Fet,540)) if AL ) >0
R: Twaxli,j)= 2 ©

ALY min(Tmasx (e, 1), Tmax (Fer,j+1)) if AL <0

ACITID min (Twaxlitt,)), Tman (ier,j41)) f AL 20
Twinli,j)= °

ACiIL;). m&('l'm}k(-’l-l: 1), T Civt,541 )) o AL )<
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Exercise 3: Disjoint Paths

Alex has a rooted tree 1" with n vertices. Alex would like to find k-edge paths in the tree which
are directed towards the root, meaning each vertex in the path (except the first) is the parent of the

previous vertex. Note that each such path has k£ + 1 vertices. Alex further requires that the paths
are all disjoint, meaning no two paths share any vertices.

Below is an example where £ = 3 with seven disjoint paths. It’s possible to find eight disjoint
3-edge paths in this tree.

(a)

(b)

()

Describe, analyze, and prove correctness of an O(n)-time greedy algorithm to compute the
maximum number of disjoint paths that can fit in the tree. Your algorithm is given a rooted
tree 1" and an integer k as input, and it should output the largest possible number of disjoint
k-edge paths directed towards the root in 7. Do not assume that 7" is a binary tree. For
example, given the tree above as input, your algorithm should return 8. Note that you only
need to return the number of paths and not the location of the paths.

Prove the greedy choice property you rely on, and argue the correctness and runtime of your
algorithm.

Now suppose each vertex in 7" has an associated reward, and your goal is to maximize the
total reward of the vertices in your paths, instead of the total number of paths. Give an
example where your greedy algorithm does not return the optimal reward.

Hint: Try to come up with an example for small %.

(optional) Describe an O(kn)-time algorithm to compute the maximum possible total reward
from vertices in paths.
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