
‭2025 Theme: Branch Out‬

‭Notes taken by Catherine Tu, C.O. ‘28,‬

‭Intro‬
‭Website Basics:‬

‭●‬ ‭Accessing a website: Client (you) send a request to the server, server stores & serves,‬
‭responds with webpage files, user can view the website‬

‭●‬ ‭HTML: actual website, CSS: style, JS: assets‬
‭●‬ ‭We’ll be building a website from ground up with profile, game,‬

‭Milestones Due Dates:‬
‭●‬ ‭0: Ideation — 1.8‬
‭●‬ ‭1: Project Pitch + Feedback — 1.11‬
‭●‬ ‭2: Minimum Viable Product (MVP) — 1.22‬
‭●‬ ‭3: Final Website — 1.29‬

‭Judging Criteria‬‭:‬
‭●‬ ‭Functionality (technical components of core features — they’ll play around with website)‬
‭●‬ ‭Usability (ease of use)‬
‭●‬ ‭Aesthetics‬
‭●‬ ‭Concept execution (applicability of solution to the problem)‬

‭Must Build:‬
‭-‬ ‭Dynamic website supported by back-end‬
‭-‬ ‭Personalized experience based on user accounts‬
‭-‬ ‭Minimum security requirements fulfilled‬
‭-‬ ‭Original design + implementation‬
‭-‬ ‭Use Git on web.lab GitHub repo‬
‭-‬ ‭Resizeable to different devices??‬

‭Cannot‬‭:‬
‭-‬ ‭Use website building softwares (Drupal, Wordpress, Squarespace)‬
‭-‬ ‭Use any part of previous project‬
‭-‬ ‭Outsource‬

‭Learning Resources‬‭:‬
‭●‬ ‭Piazza‬
‭●‬ ‭The course website‬‭weblab.mit.edu‬
‭●‬ ‭Resources compilation‬‭weblab.mit.edu/info‬
‭●‬ ‭Office hours (7-9 pm typically)‬
‭●‬ ‭Hackathon during week 2 + 3‬

http://weblab.mit.edu/
http://weblab.mit.edu/info

‭2025 Theme: Branch Out‬

‭Git‬
‭Git Cheatsheet:‬‭https://education.github.com/git-cheat-sheet-education.pdf‬
‭Problems that Git solves‬‭:‬

‭-‬ ‭Need independent local copies of codebase‬
‭-‬ ‭Need to be able to merge different people’s changes together‬
‭-‬ ‭Need to keep track of versions‬
‭-‬ ‭Need to know which version is most up to date‬

‭GitHub‬‭is a giant remote server to push code on &‬‭collaborate‬

‭In‬‭VSCode‬‭:‬
‭●‬ ‭Terminal → New Terminal (way to interact with computer)‬
‭●‬ ‭ls → list out everything in the folder / directory‬
‭●‬ ‭cd <dir> → goes inside another directory‬
‭●‬ ‭cd .. → goes backwards‬
‭●‬ ‭mkdir <new dir> → makes a directory‬
‭●‬ ‭git init → turns current directory into git repo‬
‭●‬ ‭. = current directory‬
‭●‬ ‭.. = parent directory‬

‭Staging & Commit:‬
‭●‬ ‭git status (tells you what’s happening; red = hasn’t been added)‬
‭●‬ ‭git diff (shows changes between working copy and staged / committed copy)‬
‭●‬ ‭git add <filepath>‬

‭○‬ ‭Adds filepath from working dir to staging area‬
‭●‬ ‭git commit -m ‘<message>’‬
‭●‬ ‭git log (shows the different commits in history)‬

‭○‬ ‭Different ids for each commit‬
‭●‬ ‭git push‬

‭Branching‬‭:‬
‭●‬ ‭git checkout (switches from one branch to another)‬
‭●‬ ‭git branch (looks at current branches)‬
‭●‬ ‭git checkout -b <name> (creates a new branch)‬

‭Merge‬‭:‬
‭●‬ ‭Switch to main dir‬

https://education.github.com/git-cheat-sheet-education.pdf

‭2025 Theme: Branch Out‬

‭●‬ ‭git merge <branch> (merges that branch into the dir you’re on)‬

‭Cloning GitHub:‬
‭●‬ ‭git clone <git website url>‬
‭●‬ ‭git fetch (looks & updates whatever is on your computer with what’s on GitHub)‬

‭○‬ ‭Different from git pull bc does not automatically merge — more control‬
‭●‬ ‭git pull (update & merges local copy with yours)‬
‭●‬ ‭git push‬

‭Resetting:‬
‭●‬ ‭git reset --hard (wipes everything clean from local copy; takes version from main branch)‬

‭○‬ ‭Resets the LOCAL version of your code on your computer to MATCH the last‬
‭committed version on the main branch‬

‭○‬ ‭Irreversibly deletes all local (uncommited) changes‬
‭○‬ ‭Don’t abuse this though!‬

‭●‬ ‭git checkout wX-stepY‬
‭○‬ ‭Retrieves the branch “wX-stepY” from the github cloud‬

‭Intro To HTML / CSS‬
‭HTML‬‭:‬

‭●‬ ‭Hypertext Markup Language‬
‭●‬ ‭The skeleton, CSS is the aesthetics‬
‭●‬ ‭HTML = nested boxes (simple!)‬

‭a.‬ ‭Box for the website, sub-boxes with info‬
‭●‬ ‭Have an opening and closing tab, with content in between‬
‭●‬ ‭Make sure it’s nested properly‬
‭●‬ ‭Don’t just use <div> too much‬

‭a.‬ ‭Semantics are better‬

‭Tags‬‭:‬
‭●‬ ‭<div> groups block section tag of doc (line break)‬
‭●‬ ‭ groups an inline section of a doc (select one thing)‬
‭●‬ ‭<html>‬
‭●‬ ‭<h1>‬
‭●‬ ‭<p>‬
‭●‬ ‭<div>‬
‭●‬ ‭<section>‬

‭2025 Theme: Branch Out‬

‭●‬ ‭<hr> (adds horizontal line)‬
‭●‬ ‭<tagname abc = ‘xyz’> (adding attributes)‬
‭●‬ ‭ ordered list‬

‭a.‬ ‭There’s also unordered lists, etc.‬
‭●‬ ‭<nav> (nav bar title changer)‬

‭Common Attributes:‬
‭●‬ ‭‬‭href tells it what to look at‬
‭●‬ ‭‬

‭○‬ ‭Self closing tab — similar to ‬
‭●‬ ‭‬
‭●‬ ‭<div id = “element id”>‬

‭○‬ ‭<div class = “class1 class2 class3”>‬
‭○‬ ‭<div class = “info”>Info</div>‬
‭○‬ ‭Ids must be unique in any given HTML doc‬

‭<!DOCTYPE html>‬‭heading — always include in website‬
‭<html>‬‭first element (opening tag)‬

‭<head>‬
‭<title> Title! </title>‬‭On the website tab‬
‭<link rel = “stylesheet”‬‭Joins HTML and CSS‬

‭href = “style.css” />‬‭Can have multiple‬‭style sheets‬
‭</head>‬
‭<body>‬

‭<div>‬
‭<h1> Heading! </h1>‬
‭<p> Paragraph! </p>‬

‭</div>‬
‭</body>‬

‭<html>‬‭first element (opening tag)‬

‭CSS‬‭:‬

‭●‬ ‭Cascading Style Sheets‬
‭●‬ ‭Go to website → developer tools → delete style sheets to see HTML only‬
‭●‬ ‭Adds aesthetics to HTML‬
‭●‬ ‭Hierarchy‬‭:‬

‭a.‬ ‭Inline style‬
‭b.‬ ‭ID Attributes #unique {...}‬

‭2025 Theme: Branch Out‬

‭c.‬ ‭Classes .info {...}‬
‭d.‬ ‭Elements div {...}‬
‭e.‬ ‭ONLY USE FOR CSS STYLING!‬

‭div {‬‭selector‬
‭color: red;‬‭property‬
‭font-family: Arial;‬
‭font-size: 24pt;‬

‭}‬

‭.info {‬‭selects a class called info‬
‭color: red;‬
‭font-family: Arial;‬
‭font-size: 24pt;‬

‭}‬

‭.id {‬‭selects only things tagged with an id‬
‭color: red;‬
‭font-family: Arial;‬
‭font-size: 24pt;‬

‭}‬

‭Also: :root‬

‭Margin‬‭:‬
‭●‬ ‭Has ordering‬
‭●‬ ‭Some CSS attributes can take multiple values, like‬‭padding‬‭and‬‭margin‬

‭○‬ ‭Padding typically multiples of 8‬
‭○‬ ‭padding: 8px 16px;‬

‭Workshop 0 Notes:‬
‭●‬ ‭Can just drag an html file into chrome new tab and preview what it looks like‬
‭●‬ ‭Good practice to separate into different sections <section>‬
‭●‬ ‭Utility classes denoted by .u- (classes with only one function)‬
‭●‬ ‭For h: The bigger the number, the smaller the text‬
‭●‬ ‭Fonts: use‬‭fonts.google.com‬‭→ get embed code → @import‬‭→ copy what’s within the‬

‭<style> tags → put into the styles css‬
‭●‬ ‭Use‬‭MDN Web Docs‬‭to determine which tag is best‬
‭●‬ ‭Right click + inspect to look at the void — can go to Computed to see margins‬
‭●‬ ‭Exercise: make buka buka perfectly round‬

http://fonts.google.com/
https://developer.mozilla.org/en-US/

‭2025 Theme: Branch Out‬

‭●‬ ‭Flexbox:‬‭https://css-tricks.com/snippets/css/a-guide-to-flexbox/‬
‭○‬ ‭Flexible box that lets you control direction, sizing, distribution, etc‬

‭●‬ ‭Flexbox learning:‬‭https://flexboxfroggy.com/‬
‭●‬ ‭Flex:‬‭http://www.flexboxdefense.com/‬
‭●‬ ‭Simple JS:‬‭https://www.jschallenger.com/javascript-practice‬

‭1/7/25:‬

‭JS‬
‭●‬ ‭Programming language that manipulates the content of web page (organs)‬
‭●‬ ‭Makes website interactive‬
‭●‬ ‭Not related to Java‬
‭●‬ ‭All web browsers know how to run JS‬

‭○‬ ‭Cmd + Option + j‬
‭●‬ ‭Types: boolean, number, string, null, undefined‬

‭○‬ ‭No distinction between float, int, etc (everything is number)‬
‭●‬ ‭Operators: ===, !== (to compare)‬

‭○‬ ‭2 == 2 → True‬
‭○‬ ‭2 == ‘2’ → True (type coercion before comparing)‬

‭Basic Syntax‬‭:‬
‭Const greatestCommonDiv = (a, b) => {‬

‭while (b != 0) {‬
‭const temp = b;‬
‭b = a % b;‬
‭a = temp;‬

‭}‬
‭return a;‬

‭}‬

‭Defining Constants vs. Vars:‬
‭●‬ ‭let myBool = true‬‭← variable that may change later‬
‭●‬ ‭const myBool = true‬‭← constant that CANNOT change‬‭later‬
‭●‬ ‭Use camelCase‬
‭●‬ ‭let = block scoped‬
‭●‬ ‭var = function scoped‬

‭null vs. undefined:‬
‭-‬ ‭let firstName;‬‭← currently undefined‬

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://flexboxfroggy.com/
http://www.flexboxdefense.com/
https://www.jschallenger.com/javascript-practice

‭2025 Theme: Branch Out‬

‭-‬ ‭firstName = null‬‭← can “empty” a variable with null‬

‭Commands‬‭:‬
‭●‬ ‭console.log(`a * b = ${a * b}`)‬‭← operation‬
‭●‬ ‭alert(‘congrats’)‬‭← sends out a pop up on user screen‬
‭●‬ ‭Arrays can pop(), push(<el>), change elements console.log(pets[3])‬
‭●‬ ‭While loop as long as: while (<condition>) { … }‬
‭●‬ ‭For loops: for (let i = 0; i < pet.length; i++) { … }‬

‭○‬ ‭const phrase = ‘test’‬
‭○‬ ‭console.log(phrase);‬

‭●‬ ‭for (const animal of pets) {‬‭← loops through items‬‭of pets‬
‭●‬ ‭map(...) → creates new array by applying callback function to every element‬

‭○‬ ‭const newArr = myArray.map((num) => (num * 3));‬
‭●‬ ‭filter(...) → filters out elements‬

‭○‬ ‭let posVal = values.filter(x => x > 0);‬
‭○‬ ‭const valid = staff.filter((name) => name !== ‘Annabel’)‬

‭Objects‬‭:‬
‭●‬ ‭Set of keys and values (similar to a dictionary)‬

‭○‬ ‭console.log(myCar.model);‬‭← retrieves value; same!‬
‭○‬ ‭console.log(myCar[‘color’])‬‭← retrieves value‬

‭●‬ ‭Object destructuring: shorthand to obtain multiple properties at once‬
‭○‬ ‭const { make, model } = myCar‬

‭Copy Array:‬
‭-‬ ‭Shallow copy: let copyArr = arr;‬
‭-‬ ‭Deep copy: let copyArr = [...arr];‬

‭Functions‬‭:‬
‭●‬ ‭Multiple ways to define a function, but we’re sticking to one‬
‭●‬ ‭(parameters) => { body}‬
‭●‬ ‭Callback function: function that calls another function‬
‭●‬ ‭setTimeout()‬‭← calls a function when timer ends‬
‭●‬ ‭setInterval()‬‭← calls a function at certain intervals‬

‭const celsiusToFah = (tempCel) => {‬
‭const tempF = tempCel * 9/5 + 32;‬
‭return tempF;‬

‭2025 Theme: Branch Out‬

‭};‬

‭Array of C to F‬‭: two ways‬
‭(arrayT) => {‬

‭const arr = []‬
‭for(let i = 0; i < arrayT.length; i++) {‬

‭let‬‭f = arr[i] * 9/5 + 32‬
‭arr.push(f)‬

‭}‬
‭return arr‬

‭}‬

‭const tempC = (arrayT) => {‬
‭const arr = [];‬
‭for(const t of arrayT) {‬

‭let‬‭f = t * 9/5 + 32;‬
‭arr.push(f);‬

‭}‬
‭return arr;‬

‭}‬

‭modifyArray function F to C:‬
‭const modifyArray = (arr, transformFunc) => {‬

‭const newArr = [];‬
‭for(let i = 0; i < arrF.length; i++) {‬

‭newArr.push(transformFunc(arr[i]));‬
‭}‬
‭return newArr‬

‭}‬

‭Shorthand notation:‬
‭const cToF = (tempC) => (tempC * 9/5 + 32);‬

‭Why Use Callback Functions‬‭:‬
‭●‬ ‭Callback functions = function passed as an argument to another function‬
‭●‬ ‭Callback is a reference to the function that is passed in‬
‭●‬ ‭Reusability (map and filter)‬
‭●‬ ‭Abstraction (‘when x happens, do this…’)‬

‭router.get(‘/comment’, (req, res) => {‬
‭Comment.find({ parent: req.query.parent }).then((comments) => {‬

‭res.send(comments);‬

‭2025 Theme: Branch Out‬

‭});‬
‭});‬

‭React‬
‭●‬ ‭React guide -‬

‭https://docs.google.com/document/d/1Y1WYwqoho7cWCRRU4iYrfcZZ2tCR6BFoXGS‬
‭BhLKgysQ/edit?tab=t.0‬

‭●‬ ‭React is a framework that lets you divide up your website into reusable components‬
‭●‬ ‭Simplifies (abstraction)‬
‭●‬ ‭Abstraction for a bunch of HTML, JS in one file‬
‭●‬ ‭Call on this component and it returns part of website‬
‭●‬ ‭Components of Facebook: <App />‬

‭○‬ ‭Has components within it (broken down) and components within that‬
‭○‬ ‭<NavBar /> <InfoBar /> photos, post, etc.‬
‭○‬ ‭Component Tree‬

‭●‬ ‭Components = functions that take in props and returns what you want to render‬
‭●‬ ‭The idea: once we have our components, we can write any website with “one line of‬

‭code”‬
‭●‬ ‭Link css to jsx by doing import “./NavBar.css”;‬

‭Props:‬
‭●‬ ‭Helps generalize comments‬
‭●‬ ‭Comment Props: profile picture, author name, comment content, like, reply, date poster‬
‭●‬ ‭Parent (post) calls props then outputs a rendered comment‬
‭●‬ ‭Can be updated when parent component passes in a new prop‬
‭●‬ ‭Props are‬‭immutable‬
‭●‬ ‭< Post name=’Kenneth’ text=”welcome to weblab!” />‬
‭●‬ ‭props = {name: “Samvit”, text: “walcome to weblab};‬

‭State‬‭:‬
‭●‬ ‭Info maintained by a component‬
‭●‬ ‭Lets us control what is displayed in application‬
‭●‬ ‭Can be updated (‬‭mutable‬‭) by human input or automated‬
‭●‬ ‭Ex: counting number of comments, adding comments‬
‭●‬ ‭const [status, setStatus] = useState(‘busy’);‬
‭●‬ ‭const [isOnline, setIsOnline] = useState(false);‬
‭●‬ ‭Always set state!! Never assign‬

https://docs.google.com/document/d/1Y1WYwqoho7cWCRRU4iYrfcZZ2tCR6BFoXGSBhLKgysQ/edit?tab=t.0
https://docs.google.com/document/d/1Y1WYwqoho7cWCRRU4iYrfcZZ2tCR6BFoXGSBhLKgysQ/edit?tab=t.0

‭2025 Theme: Branch Out‬

‭○‬ ‭const [value, setValue] = useState(0)‬
‭○‬ ‭setValue(6); vs value = 42 (BAD)‬

‭Toggle thumbs up‬‭:‬
‭<button‬

‭onClick = {() => {‬
‭setIsLiked(!isLiked);‬

‭}}>‬
‭{isLiked ? “Liked” : “Like”}‬

‭</button>‬

‭CommentReply.js‬‭(generalized function)‬
‭import React, { useState } from ‘react’‬‭← import react‬‭libs‬
‭const CommentReply = (props) => {‬‭← define component‬

‭const [isLiked, setIsLiked] = useState(false)‬‭← react‬‭state syntax‬
‭return (‬

‭<div className=’comment-text’>‬
‭<h5>{‬‭props‬‭.name}</h5>‬
‭<p>{props.content}</p>‬
‭<p>{isLiked ? “Liked” : “Like” }</p>‬‭← conditional‬‭state‬

‭</div>‬
‭)‬

‭}‬

‭export default CommentReply‬‭← export component‬

‭Slide 87 - end‬‭:‬‭Facebook example with props and states‬‭(customized)‬

‭Workshop 1 Notes:‬
‭●‬ ‭Use className instead of class in React‬
‭●‬ ‭npm install → npm run dev‬‭← in terminal will see live‬‭page updates then navigate to‬

‭localhost:5173‬
‭●‬ ‭Add a state to component: const [something, setSomething] = useState(default val)‬
‭●‬ ‭Go to console: right click + inspect‬

‭Component Tree‬‭: break down into smaller parts when…‬
‭1.‬ ‭Component code is getting too long or hard to read‬
‭2.‬ ‭Component contains parts or sections (usually reusable) that have their own functionality‬
‭3.‬ ‭Component is handling too many responsibilities‬

‭○‬ ‭Ex: a button may require a lot of logic‬

https://docs.google.com/presentation/d/18SEtLkJimzepxD-5EpW2T00dCQNs0Mx6v5XZrRw-gp4/edit#slide=id.g1ee575f557a_0_446

‭2025 Theme: Branch Out‬

‭●‬ ‭There’s no single way to structure React applications — you are the architect‬
‭●‬ ‭Pass down props that may be used in multiple components‬
‭●‬ ‭Component rendering works like a restaurant (trigger aka mounting, render, commit)‬

‭○‬ ‭Dismounting: no longer view the component‬

‭React Hooks:‬‭https://react.dev/reference/react/hooks‬
‭●‬ ‭Special functions provided by React to access parts of component lifecycle‬
‭●‬ ‭useState, useEffect‬

‭useState‬‭: Lets us add a state variable to our component‬
‭1.‬ ‭import React, { useState } from ‘react’;‬
‭2.‬ ‭Create state (name) and state variable (setName)‬
‭3.‬ ‭setState‬
‭4.‬ ‭Pass state as prop‬

‭useEffect Hook:‬
‭●‬ ‭Hook that does something when an event occurs‬
‭●‬ ‭Takes two variables: callback function and OPTIONAL array‬
‭●‬ ‭Runs after specific variable changes (response to state change)‬
‭●‬ ‭Typically used to synchronize with something external to React‬

‭○‬ ‭Load external data into state‬
‭○‬ ‭Call an API/perform some computation/etc at specific times‬

https://react.dev/reference/react/hooks

‭2025 Theme: Branch Out‬

‭●‬ ‭useEffect(function,‬‭optional‬‭dependency array);‬
‭●‬ ‭We can do a lot of work that only needs to be done once‬
‭●‬ ‭Guarantee that we have the most up-to-date state value if we use the state as dependency‬

‭○‬ ‭Counters the set function does not update right away‬

‭Examples:‬
‭useEffect(function, [var1, var2])‬‭← calls func on‬‭mount (1st render) & when var1/var2 change‬
‭useEffect(function, [])‬‭← calls function only on mount‬‭(component is rendered for first time)‬
‭useEffect(function)‬‭← calls function at every render‬‭(first component call + every state change)‬

‭Common Patterns in React‬‭:‬
‭1.‬ ‭Conditional rendering‬

‭a.‬ ‭In JSX: using HTML tags to render stuff‬
‭b.‬ ‭Ternary statement — condition ? resultIfTrue : resultIfFalse‬

‭2.‬ ‭Rendering an array of data‬
‭a.‬ ‭Loop rendering‬
‭b.‬ ‭map()‬

‭3.‬ ‭Fetching and sending data from a server‬

‭Stopwatch Example‬‭:‬
‭const Stopwatch = () => {‬

‭const [time, setTime] = useState(0)‬

‭useEffect(() => {‬
‭const timer = setInterval(() => {‬

‭setTime((oldTime) => oldTime + 1);‬
‭}, 1000);‬
‭return () => clearInterval(timer);‬

‭}, []);‬

‭return <>Time: {time}</>;‬
‭};‬

‭Another Way:‬
‭const Stopwatch = () => {‬

‭const [time, setTime] = useState(0);‬

‭use Effect(() => {‬
‭setInterval(() => {‬

‭setTime(time + 1);‬
‭}, 1000);‬

‭}, [time]);‬

‭2025 Theme: Branch Out‬

‭return <h1>{time></h1>‬
‭}‬

‭useContext‬‭Hook:‬
‭●‬ ‭Contexts provides a way for higher-level components in our tree to communicate to all‬

‭sub-components‬
‭●‬ ‭Great way to share state variables from one component to ALL of its descendants‬
‭●‬ ‭import React, { createContext } from ‘react’‬
‭●‬ ‭const UserContext = createContext();‬‭← outside our‬‭component we create a context‬
‭●‬ ‭**Inside component, we create a useState name & variable [user, setUser]‬
‭●‬ ‭<UserContext.Provider value = {{user: user}}>‬

‭<h1{`Hello ${user}!`}</h1>‬
‭</UserContext.Provider>‬‭← wrap content of component‬‭in a‬‭Provider‬

‭○‬ ‭Provider gives a JSON object value‬
‭●‬ ‭In another component: const user = useContext(UserContext).user;‬
‭●‬ ‭If‬‭useState‬‭is like a piece of info,‬‭useContext‬‭is‬‭an empty book you can write in, and‬

‭Provider‬‭is like a library you can check out the book‬‭from‬
‭●‬ ‭Every subcomponent of the thing the Provider is wrapped in can use the context‬
‭●‬ ‭Can have multiple contexts‬

‭React Components:‬
‭●‬ ‭More powerful HTML element‬
‭●‬ ‭Javascript functions‬
‭●‬ ‭In old React, components were classes; now, are functions‬
‭●‬ ‭Components are made of JSX (similar to HTML) elements and other components‬
‭●‬ ‭Can nest components within each other‬
‭●‬ ‭All components are recursively rendered until there are no more nested components‬

‭DOM: Document Object Model‬
‭●‬ ‭Data representation (model) of the objects that comprise the structure and content of the‬

‭document‬
‭●‬ ‭At the very top: document, then <html>, etc‬
‭●‬ ‭Can be represented as a tree‬
‭●‬ ‭Can use DOM to represent react components and HTML‬
‭●‬ ‭React creates a virtual DOM tree that represents structure of your UI‬

‭Phases of Component’s Lifestyle:‬
‭1.‬ ‭Mounting‬

‭a.‬ ‭Process of adding a component to the DOM‬
‭2.‬ ‭Updating (loop)‬

‭a.‬ ‭Trigger causes a re-render and changes the virtual DOM‬

‭2025 Theme: Branch Out‬

‭b.‬ ‭Component can stay in updating phase for a long time‬
‭c.‬ ‭Caused by trigger, render, commit‬

‭3.‬ ‭Disnounting‬
‭a.‬ ‭Process or removing a component from DOM‬

‭Triggers‬‭: causes component to enter different phase;‬‭happens when…‬
‭●‬ ‭React is telling the component to render for the initial render‬
‭●‬ ‭One of its ancestors re-renders (you’ll re-render if ancestor does)‬

‭○‬ ‭Theres a way to avoid this (different hooks)‬
‭●‬ ‭A state changes in the component‬
‭●‬ ‭A prop passed from parent to itself changes‬

‭Rendering‬‭: create the virtual DOM at each phase‬
‭●‬ ‭Runs the component’s function, which triggers its children to be rendered‬
‭●‬ ‭Reacts looks at where the state resides so we can re-render as little as possible‬

‭Committing‬‭: React transfer changes from virtual DOM‬‭to our browser‬
‭●‬ ‭React changes the real DOM (from the browser) wherever it finds a difference between‬

‭the virtual DOM and real DOM‬
‭●‬ ‭React only modifies differences — new real DOM reflects what the virtual DOM is‬

‭○‬ ‭Painting converts it‬

‭Create a blank React app:‬
‭●‬ ‭npm create vite@latest‬

‭○‬ ‭Name, framework (React), variant (JavaScript)‬
‭●‬ ‭cd app-name‬
‭●‬ ‭npm install‬
‭●‬ ‭npm run dev‬
‭●‬ ‭Visit‬‭localhost:5173‬‭in browser‬

‭React Router‬
‭Documentation‬‭:‬‭https://reactrouter.com/en/6.28.1‬

‭●‬ ‭URL = base URL + route path‬
‭●‬ ‭Need a‬‭react-router-dom‬‭in package.json file‬

‭○‬ ‭Specify a version (min version allowed) or else can’t do anything with router‬
‭●‬ ‭Allows us to display different React components based on what the current path is‬
‭●‬ ‭Outlets + hooks like useParams and useOutletContext help us pass info down our route‬

‭tree‬

https://reactrouter.com/en/6.28.1

‭2025 Theme: Branch Out‬

‭Most common imports:‬
‭import‬‭{‬

‭createBrowserRouter‬‭,‬

‭createRoutesFromElements‬‭,‬

‭Route‬‭,‬

‭RouterProvider‬‭,‬

‭}‬‭from‬‭'react-router-dom'‬

‭●‬ ‭Creating the router lays out the routing for entire element:‬
‭const‬‭router‬‭=‬‭createBrowserRouter‬‭(‬

‭createRoutesFromElements‬‭(‬

‭<‬‭Route‬‭errorElement‬‭=‬‭{‬‭<‬‭NotFound‬‭/>‬‭}‬‭elements‬‭=‬‭{‬‭<‬‭App‬‭/>‬‭}‬‭>‬

‭<‬‭Route‬‭path‬‭=‬‭"/"‬‭element‬‭=‬‭{‬‭<‬‭Feed‬‭/>‬‭}‬‭/>‬

‭<‬‭Route‬‭path‬‭=‬‭"/profile"‬‭element‬‭=‬‭{‬‭<‬‭Profile‬‭/>‬‭}‬‭/>‬

‭</‬‭Route‬‭>‬

‭)‬

‭);‬

‭●‬ ‭“Tree” with App | NotFound at top and Feed & Profile below‬
‭ReactDOM‬‭.‬‭createRoot‬‭(‬‭document‬‭.‬‭getElementById‬‭(‬‭"root"‬‭)).‬‭render‬‭(‬

‭<>‬

‭<‬‭RouterProvider‬‭router‬‭=‬‭{‬‭router‬‭}‬‭/>‬

‭{‬‭/* use Router to route between pages */‬‭}‬

‭</>‬

‭);‬

‭React Router Setup‬‭:‬
‭●‬ ‭Imports many packages (will not be changed) from react-router-dom‬
‭●‬ ‭Render the router into the element (.root)‬
‭●‬ ‭<Outlet/> is a placeholder in App.jsx – when we render at /, will be replaces‬
‭●‬ ‭const myTestProp =‬‭useOutletContext()‬‭.myTestProp‬

‭○‬ ‭Used to pass the same thing to all subcomponents from App.jsx‬
‭●‬ ‭The path to a route is the concatenation of relative routes along the root‬

‭○‬ ‭Error elements catch when paths don’t matche valid router paths‬

‭Dynamic Routing:‬‭useParams‬
‭●‬ ‭Want as many profiles as possible and dont want to hardcode every single one as React‬

‭components‬
‭●‬ ‭Use the‬‭useParams‬‭method‬

‭2025 Theme: Branch Out‬

‭APIs and Promises‬
‭●‬ ‭Right now, our Catbook is static (does not change with user data)‬
‭●‬ ‭Frontend: interacts with user; backend: data storage/manipulation‬

‭HTTP - Hypertext Transfer Protocol‬
‭●‬ ‭Standardized form of requests and responses for website‬
‭●‬ ‭HTTPS is HTTP secure‬
‭●‬ ‭HTTP(S) Methods: get, post, put, delete‬

‭Request‬‭:‬
‭●‬ ‭Request Headers: provides context for the HTTP request (fancy)‬

‭○‬ ‭Timestamp, language, etc‬
‭●‬ ‭Request Body: data associated with the request‬

‭○‬ ‭Key-body pairs‬
‭●‬ ‭Open developer section →‬‭cmd + shift + i → network‬‭→ see all the requests our‬

‭website makes‬
‭●‬ ‭Typing a URL into any browser sets off a get request that often responds with HTML, JS,‬

‭CSS‬

‭Response‬‭:‬
‭●‬ ‭Headers: info about the response‬
‭●‬ ‭Body: the response data‬

‭Respond - Status Codes‬‭:‬
‭●‬ ‭404 (page not found)‬
‭●‬ ‭400 (bad request)‬
‭●‬ ‭500 (internal server error)‬
‭●‬ ‭200 (ok – request successful)‬
‭●‬ ‭1xx - informational‬

‭2025 Theme: Branch Out‬

‭●‬ ‭2xx - succeeded‬
‭●‬ ‭3xx - redirect‬
‭●‬ ‭4xx - you did something wrong‬
‭●‬ ‭5xx - server did something wrong‬

‭APIs: Application Program Interface‬
‭●‬ ‭Set of endpoints of a service that allows you to make requests in order to perform a‬

‭function‬
‭●‬ ‭Ex: Google Calendar API, Amazon Selling Partner API, Open AI LLM API, YouTube v3‬

‭API, OpenWeather API, The Dog API, Google Maps API, Twillio API, Twitter API, MIT‬
‭People API‬

‭●‬ ‭You need to access data, but cannot access data on servers directly (inconvenient and‬
‭security nightmare)‬

‭●‬ ‭Server forwards requests from our client to database and APIs‬
‭●‬ ‭Return type of a get function is a‬‭promise‬

‭○‬ ‭Promises allow users to do things while server takes its time fulfilling the request‬

‭Promises in JavaScript:‬
‭●‬ ‭.then() → once promise is fulfilled, do stuff (call a callback function); returns a promise‬

‭get(‘/api/stories’).then((storiesObj) => {‬
‭setStories(storiesObj);‬

‭});‬
‭●‬ ‭.catch() → once the promise is rejected, do stuff (call a callback function)‬

‭get(‘/api/stories’).then((storiesObj) => {‬
‭setStories(storiesObj);‬

‭}) .catch((err) => {‬
‭console.out(‘this is so sad’, err.message);‬

‭});‬
‭●‬ ‭.all() → returns a promise that resolves once all promises in array resolve‬

‭Promise.all(promises).then((allResults) => { … })‬
‭●‬ ‭.race() → returns promise that fulfils or rejects with the first promise that fulfils or rejects‬
‭●‬ ‭.any() → returns a promise that resolves when any of the input promises fulfils‬

‭~Backend: Servers and Nodes‬
‭●‬ ‭Some computer that our client requests data from‬
‭●‬ ‭Need for server: want to request data from a central point (file access), centralization‬

‭(true state multiple people can go to), security (don’t want client to access database)‬

‭2025 Theme: Branch Out‬

‭●‬ ‭A server binds to a port on a computer‬
‭○‬ ‭Computer has multiple ports‬
‭○‬ ‭Server will be on a certain port listening for requests‬
‭○‬ ‭protocol://domain:port‬
‭○‬ ‭HTTPS websites: 443, HTTP: 80‬
‭○‬ ‭Most websites have a default port‬

‭●‬ ‭Every computer can run server code (run a program designed to actively listen to requests‬
‭from other computers on a network)‬

‭○‬ ‭Special domain localhost (sending request to own computer through a certain‬
‭port)‬

‭●‬ ‭Frameworks: handle the logic of listening to ports and sending along to be handled (low‬
‭level communications)‬

‭●‬ ‭Javascript we run on server is for the client; our computer doesn’t understand Javascript,‬
‭which is why we use Node.js‬

‭○‬ ‭Node js = a JS runtime‬
‭○‬ ‭Have already been using it →‬‭npm‬‭= Node Package Manager‬
‭○‬ ‭package.json holds project metadata‬

‭●‬ ‭/client folder: contains all our React code, components, pages, utilities, etc (front end)‬
‭●‬ ‭/server: contains all our backend code‬
‭●‬ ‭Other folders: set up by staff to actually run the website‬
‭●‬ ‭Frontend:‬‭npm run dev‬‭→ use localhost:5173‬
‭●‬ ‭Backend:‬‭npm start‬‭→ use localhost:3000‬

‭API Endpoint:‬
‭const app = express();‬
‭app.get(‘/api/test’, (req, res) => {‬

‭res.send({message: ‘Wow I made my first API’});‬
‭});‬

‭●‬ ‭HTTP method:‬‭app.get‬
‭●‬ ‭Express route:‬‭‘/api/test’‬
‭●‬ ‭Parameters: request and response object‬

‭○‬ ‭req = incoming request‬
‭○‬ ‭res = server’s response‬

‭Middleware‬‭:‬
‭●‬ ‭Run code in between receiving a request and running endpoint code‬

‭○‬ ‭Workers in an assembly line‬
‭○‬ ‭Called in order of definition‬

‭●‬ ‭Ex: console.log() on server that prints in terminal that runs npm runs start‬
‭●‬ ‭app.use() takes optional path and “middleware object” (often callback func)‬

‭app.use(req, res, next) => {‬

‭2025 Theme: Branch Out‬

‭console.log(‘time:’ Date.now())‬
‭next()‬

‭});‬
‭●‬ ‭This executed for every request to the router‬

‭app.use(err, req, res, next) => {‬
‭...‬

‭});‬
‭●‬ ‭Error middlewares take in four parameters and catch if endpoint code errors; defined last‬
‭●‬ ‭Catch All endpoints: app.get(‘*’)‬

‭○‬ ‭All endpoints which are not concretely defined will hit this‬
‭○‬ ‭Log the error seen in terminal and send to client seen in browser‬

‭app‬‭.‬‭all‬‭(‬‭"*"‬‭, (‬‭req‬‭,‬‭res‬‭)‬‭=>‬‭{‬

‭console‬‭.‬‭log‬‭(‬‭̀Route not found:‬‭${‬‭req‬‭.‬‭method‬‭}‬‭${‬‭req‬‭.‬‭url‬‭}‬‭̀‬‭);‬

‭res‬‭.‬‭status‬‭(‬‭404‬‭).‬‭send‬‭({‬‭msg:‬‭"Route not found"‬‭});‬

‭});‬

‭Get Requests:‬
‭●‬ ‭req.query‬
‭●‬ ‭Ex: req.query.content, req.query.parent‬

‭Post Requests:‬
‭●‬ ‭req.body‬
‭●‬ ‭Ex: req.body.content‬

‭App vs Router:‬
‭●‬ ‭App: (server.js) represents your overall server (main application)‬
‭●‬ ‭Router: (cat.js, dog.js, etc) isolated groups of API endpoints (mini applications)‬

‭○‬ ‭const router = express.Router();‬
‭○‬ ‭Organization / modularity‬

‭●‬ ‭app in server.js → middleware to route /api paths → router in api.js‬

‭Workshop 3 Notes:‬
‭●‬ ‭Getting and setting stories in front end:‬

‭useEffect‬‭(()‬‭=>‬‭{‬

‭// TODO (step1): fetch the stories from the server‬

‭get‬‭(‬‭"/api/stories"‬‭).‬‭then‬‭((‬‭storyObjs‬‭)‬‭=>‬‭{‬

‭const‬‭reversedStories‬‭=‬‭storyObjs‬‭.‬‭reverse‬‭();‬

‭setStories‬‭(‬‭storyObjs‬‭);‬

‭});‬

‭}, []);‬

‭●‬ ‭HTTP Request: get‬

‭2025 Theme: Branch Out‬

‭●‬ ‭We use a .then() because we don’t want to wait for the request to be fulfilled — we create‬
‭a promise and .then() handles the content after it is resolved‬

‭●‬ ‭Express routing documentation:‬‭https://expressjs.com/en/guide/routing.html‬
‭●‬ ‭Any future endpoints we write can be put in api.js‬

‭Design, UI & UX, Figma‬
‭UI: User Interface (visuals)‬

‭●‬ ‭Fonts, color palettes, shapes + layout, reusable content‬
‭○‬ ‭Adobe Fonts‬
‭○‬ ‭Coolors‬‭(palette)‬
‭○‬ ‭Think about color psychology‬
‭○‬ ‭Web design museum‬‭(how websites have changed over‬‭time)‬
‭○‬ ‭Consider user base‬

‭●‬ ‭UI changes over time — overall, we see a trend towards more minimal UI in past decade‬
‭○‬ ‭Also varies across culture (ex: Yahoo in America vs. Japan)‬

‭●‬ ‭Make UI look good:‬
‭○‬ ‭Consistency (use UI guidelines)‬
‭○‬ ‭UI component library (ex: Mantine — can customize and reuse components)‬
‭○‬ ‭Responsive design (go to‬‭view → inspect‬‭and choose‬‭dimensions to check‬

‭resizing and how it looks)‬
‭○‬ ‭Interactivity (allows users to interact with website)‬

‭UX: User Experience (usability)‬
‭●‬ ‭Use symbols, concepts, and colors that are commonly understood across cultures‬
‭●‬ ‭Contrast color checker:‬‭https://contrastchecker.com/‬
‭●‬ ‭Make it intuitive (large buttons)‬

‭Wireframing‬‭:‬
‭●‬ ‭Represent the skeletal framework / blueprint of website‬
‭●‬ ‭Use placeholders and focus on overall structure‬
‭●‬ ‭Can be drafty / mockup‬
‭●‬ ‭Make a wireframe:‬

‭○‬ ‭Figma‬‭https://www.figma.com/‬
‭○‬ ‭Figma cheatsheet:‬

‭https://drive.google.com/file/d/1BJesvDGOprIPs-FtDjfRHVbBtPGYsVFW/view‬
‭○‬ ‭Google slides‬
‭○‬ ‭Pen & paper‬

https://expressjs.com/en/guide/routing.html
https://fonts.adobe.com/
https://coolors.co/
https://www.webdesignmuseum.org/
https://contrastchecker.com/
https://www.figma.com/
https://drive.google.com/file/d/1BJesvDGOprIPs-FtDjfRHVbBtPGYsVFW/view

‭2025 Theme: Branch Out‬

‭Prototyping‬‭:‬
‭●‬ ‭Take a wireframe and bring it to life‬
‭●‬ ‭Improved UI, can further understand technical requirements of project‬

‭Databases‬
‭●‬ ‭Database (DB): Organized collection of data‬

‭○‬ ‭Amazon Neptune (graph based), IBM IMS (hierarchical), influxdb (time series)‬
‭●‬ ‭Database Management System (DBMS): collection of functions that let you‬

‭retrieve/add/modify/delete data‬
‭●‬ ‭Storing data in server as variable is wrong because:‬

‭○‬ ‭Can run out of memory‬
‭○‬ ‭All data is gone‬

‭●‬ ‭Can load data & write data to file‬
‭●‬ ‭Get: Frontend talks to server, server talks to DBMS, then DBMS retrieves and gives back‬

‭to server‬
‭○‬ ‭get(“/api/stories”)‬
‭○‬ ‭DBMS.find(Storys)‬
‭○‬ ‭post(“/api/stories”, {content: “new story”})‬
‭○‬ ‭DBMS.add(Storys, {_id: 5, content: …})‬

‭●‬ ‭Write: server gives new data to DBMS‬

‭Kinds of Databases‬‭:‬
‭●‬ ‭Relational Database (SQL) → Stores data in a spreadsheet-like format (tables) with rows‬

‭and columns‬
‭○‬ ‭Relations between different tables‬
‭○‬ ‭Problems: can be complicated to make relationships between tables; need‬

‭overhead code for relations between tables‬
‭●‬ ‭Document Database (NoSQL) → documents, alike JSON objects‬

‭○‬ ‭Don’t need to have the same fields‬
‭○‬ ‭Might want common objects living in the same collection (comments, stories)‬
‭○‬ ‭Optimizes write speed, memory usage, query speed, and concurrency issues‬
‭○‬ ‭Ex: MondoDB‬

‭●‬ ‭Run MongoDB on the ‘cloud’ (in case one fails)‬
‭○‬ ‭Duplicate data across different hard drives for redundancy‬

‭MongoDB (Database)‬
‭Mongo Cheatsheet:‬
‭https://drive.google.com/file/d/1LI2XNX7lekOLdPccL1u9Eiy4KAGEgEsq/view‬

https://drive.google.com/file/d/1LI2XNX7lekOLdPccL1u9Eiy4KAGEgEsq/view

‭2025 Theme: Branch Out‬

‭●‬ ‭Different clusters: comments, stories, users‬
‭●‬ ‭Can edit field and modify data directly‬
‭●‬ ‭Efficient when we need to write lots of data‬
‭●‬ ‭Structure of data is very prone to changes‬
‭●‬ ‭Relatively easy to use as programmer‬
‭●‬ ‭Structure:‬

‭○‬ ‭Database: group of collections‬
‭○‬ ‭Collection: group of very similar pieces of data‬
‭○‬ ‭Document: single JSON or JS object‬
‭○‬ ‭Field: attribute we want to record‬

‭Mongoose‬‭:‬
‭●‬ ‭Object Data Modeling (ODM) Javascript library‬
‭●‬ ‭Allows us to interact with MongoDB cluster‬
‭●‬ ‭Enforce schemas and models‬
‭●‬ ‭Creates documents‬
‭●‬ ‭Interacts with databases‬
‭●‬ ‭Every document is auto assigned a unique identifier (_id field)‬
‭●‬ ‭Useful when theres a relationship between documents‬

‭const mongoose = require(“mongoose”);‬
‭…‬

‭Schema‬‭:‬
‭●‬ ‭Map to a single MongoDB collection and define the structure of documents in that‬

‭collection‬
‭●‬ ‭Define the keys (document fields) and types of values corresponding to keys‬
‭●‬ ‭Schema types‬‭: string, num, date, buffer, bool, mixed,‬‭object id, array‬

‭const UserSchema = new mongoose.Schema({‬
‭name: String,‬
‭age: Number,‬
‭pets: [String]’‬

‭});‬

‭Models‬‭:‬
‭●‬ ‭Constructors that we define from a Schema and apply to MongoDB collection‬

‭○‬ ‭Construct documents, query for documents, delete documents, update, etc‬

‭const User = mongoose.model(“User”, UserSchema)‬

‭Creating Documents:‬

http://mongoosejs.com/docs/schematypes.html

‭2025 Theme: Branch Out‬

‭const Tim = new User({name: “Time”, age: 21});‬
‭Tim.save()‬

‭.then((student) => console.log(`added ${student.name}`)‬

‭Finding & Deleting Documents:‬
‭●‬ ‭First argument describes how to filter the collection‬
‭●‬ ‭To execute the query, we must explicitly invoke it‬
‭●‬ ‭Can add as many params as you want to filter‬

‭Promises & Await‬
‭●‬ ‭Syncronous‬‭: Processes happen one after the other (“one‬‭order at a time”)‬

‭○‬ ‭Lots of time wasted‬
‭●‬ ‭Asynchronous‬‭: Processes can run at the same time (“multiple‬‭orders at a time”)‬
‭●‬ ‭After placing a delivery order, or creating a promise, they will have one of three statuses:‬

‭○‬ ‭Fulfilled .them‬
‭○‬ ‭Pending‬
‭○‬ ‭Rejected (something went wrong) .catcjh‬

‭2025 Theme: Branch Out‬

‭●‬ ‭If a promise is fulfilled, do stuff (callback function)‬

‭Await & Async‬‭:‬
‭●‬ ‭Only asynchronous functions can use await‬

‭const myFumc = async () => {‬
‭console.log(await a + await b);‬

‭};‬
‭●‬ ‭Can use .then(), but it’s uglier‬
‭●‬ ‭Waits for the promise to resolve and uses that value‬

‭console.log(await a + await b)‬

‭When to Use Async:‬
‭●‬ ‭Running background tasks without stopping the user from interacting with the front end‬

‭○‬ ‭Fetching data‬
‭○‬ ‭Downloads / uploads‬
‭○‬ ‭Ex: Can still click around on other stuff as Spotify plays our music‬

‭Auth: Authorization and Authentication‬
‭●‬ ‭Authorization‬‭: Determines what a user can access and‬‭what actions they can perform‬

‭○‬ ‭Verifying user permissions‬
‭●‬ ‭Authentication‬‭: How we are proving our identity to‬‭the website‬

‭○‬ ‭Verifying user credentials‬
‭○‬ ‭Bad to store user / pass info about each User in our database — password is not‬

‭encrypted & hackers can easily read it‬
‭○‬ ‭Solution: Hash functions → take in a string & mathematically generate a string‬

‭(one way & deterministic) → bad because can very easily look up common hash‬
‭codes and try them‬

‭○‬ ‭Solution: Hash Salting → adding random strings at the end → people can still‬
‭eventually guess‬

‭○‬ ‭Solution: Google sign in → but… how to prove to out website that we logged in /‬
‭already logged in?‬

‭2025 Theme: Branch Out‬

‭■‬ ‭Sessions‬‭: user logs in, server stores the session & responds with a session‬
‭ID‬

‭●‬ ‭Secure because the server stores all the information about the user‬
‭and only sends back session ID‬

‭●‬ ‭Issues: multiple different servers = each server needs a different‬
‭glocal lookup table for users‬

‭■‬ ‭Tokens‬‭:‬
‭●‬ ‭User submits login form, server creates a JWT (JSON web token),‬

‭browser puts JWT in local storage, signed JWT header validated‬
‭on future requests‬

‭Server vs. Sessions:‬

‭Sessions:‬ ‭Server:‬

‭Stores authentication details:‬ ‭Server‬ ‭User‬

‭What users send to have req‬
‭authorized:‬

‭Cookie‬ ‭Token itself‬

‭Can server perform security‬
‭actions?‬

‭Yes – all authentication‬
‭details are stored on the‬
‭server side‬

‭No — authentication details‬
‭are stored on user side; server‬
‭does not store authentication‬
‭details‬

‭Catbook manage login:‬
‭●‬ ‭Seperate auth server & resource server‬
‭●‬ ‭Initial login: sign in with Google‬
‭●‬ ‭Staying logged in: Express js sessions‬
‭●‬ ‭Login to website → inspect → network → payload → receive success token‬

‭○‬ ‭JWT.io → paste token you get, and once you decode, you have a lot of info that is‬
‭stored in this token (email address, name, etc)‬

‭○‬ ‭If you delete the cookie, you’ll be signed out and automatically get logged out‬
‭○‬ ‭Sends cookie as identity verification for subsequent requests‬

‭W5 Notes‬‭:‬
‭●‬ ‭Need the Google Client ID for front and back end (need to verify token)‬
‭●‬ ‭In index.jsx – OAuthProvider sends the client id‬
‭●‬ ‭Make a User model (edit user.js)‬

‭○‬ ‭name: String‬
‭○‬ ‭googleid: String‬

‭●‬ ‭auth.js → persisting user‬
‭●‬ ‭Need to add routes of login and logout on api.js‬

‭2025 Theme: Branch Out‬

‭Chatbook‬

‭●‬ ‭Backend‬‭: what inputs to AI requests (req.query, req.body),‬‭and what API requests need‬
‭to return to frontend (if any)‬

‭○‬ ‭Get all of the messages‬
‭○‬ ‭Send a message to everyone‬

‭●‬ ‭Data Representation‬‭:‬
‭○‬ ‭ChatData‬

‭■‬ ‭Messages = array of MessageObjects‬
‭■‬ ‭Recipient: a UserObj‬

‭○‬ ‭UserObj‬
‭■‬ ‭_id: String‬
‭■‬ ‭name: string‬

‭○‬ ‭MessageObj‬
‭■‬ ‭sender‬
‭■‬ ‭content‬

‭Ex: Chatbook data representation:‬

‭Message schema (in the .js file) — workshop 6:‬
‭//define a message schema for the database‬

‭const‬‭MessageSchema‬‭=‬‭new‬‭mongoose‬‭.‬‭Schema‬‭({‬

‭// TODO (step 3.1): Write the schema for a message‬

‭sender:‬‭{‬

‭_id‬‭:‬‭String‬‭,‬

‭2025 Theme: Branch Out‬

‭name‬‭:‬‭String‬‭,‬

‭},‬

‭recipient:‬‭{‬

‭_id‬‭:‬‭String‬‭,‬

‭name‬‭:‬‭String‬‭,‬

‭},‬

‭timestamp:‬‭{‬‭type‬‭:‬‭Date‬‭,‬‭default :‬‭Date‬‭.‬‭now‬‭()},‬

‭content‬‭:‬‭String‬‭,‬

‭});‬

‭Sockets: Socket.IO (uses WebSocket)‬
‭How to use sockets‬‭:‬
‭https://docs.google.com/document/d/1H3pie1d1yz3LrRPtKcEi1e5aF6LrKg0yQIfvqVb6nZk/edit‬
‭?tab=t.0‬

‭●‬ ‭Sockets enable fast, live communication between the server and client, while API‬
‭endpoints are for slow data communication‬

‭●‬ ‭We use a server socket to broadcast live updates to the clients, and use a client socket‬
‭manager to receive update from the server‬

‭●‬ ‭Important part of live interaction/connection (game, chat)‬
‭●‬ ‭Supports many clients interacting with a game state at the same time‬
‭●‬ ‭Limitation of HTTP: client sends request to server, and server responds to client‬

‭○‬ ‭Server can’t send data to client unless a request is made‬
‭○‬ ‭Could constantly poll the server (ask every x seconds if new requests are made),‬

‭but this is very slow & inefficient‬
‭○‬ ‭Solution: Teach server how to initiate conversations‬

‭●‬ ‭Broadcast‬‭a message from server to every user connected‬
‭○‬ ‭socketManager.getIo.emit(“event_name”, data)‬
‭○‬ ‭Title (channel) and the data‬
‭○‬ ‭socketManager.getSocketFromUserId‬
‭○‬ ‭Getes a specific user‬

‭●‬ ‭Listen‬‭for messages on client‬
‭○‬ ‭socket.on(“event_name”, someFunction)‬
‭○‬ ‭Title and what to do when you get a socket emit of that title‬
‭○‬ ‭Function looks like (data) => {do something with data}‬

‭●‬ ‭server-socket.js exports functions for us to use, we can import it then start using‬
‭○‬ ‭Documentation on socket.js functions:‬

‭https://docs.google.com/document/d/1Q8_T7NEc1ROY7LhwvOTgXzr3SFFGVL‬
‭WOFqTBOYKyCoE/edit?tab=t.0#heading=h.p4253amxfdiu‬

https://docs.google.com/document/d/1H3pie1d1yz3LrRPtKcEi1e5aF6LrKg0yQIfvqVb6nZk/edit?tab=t.0
https://docs.google.com/document/d/1H3pie1d1yz3LrRPtKcEi1e5aF6LrKg0yQIfvqVb6nZk/edit?tab=t.0
https://docs.google.com/document/d/1Q8_T7NEc1ROY7LhwvOTgXzr3SFFGVLWOFqTBOYKyCoE/edit?tab=t.0#heading=h.p4253amxfdiu
https://docs.google.com/document/d/1Q8_T7NEc1ROY7LhwvOTgXzr3SFFGVLWOFqTBOYKyCoE/edit?tab=t.0#heading=h.p4253amxfdiu

‭2025 Theme: Branch Out‬

‭●‬ ‭Ex: sockets in chatbook → when a user sends a message, all other users will see that‬
‭message; when a user joins, all other users will see them‬

‭○‬ ‭DM others‬
‭○‬ ‭See messages live‬

‭●‬ ‭io.emit‬‭is public to all sockets, but if we want the‬‭server to amit to a particular cient‬
‭socket, we use‬‭io.{specific client id}.emit‬

‭●‬ ‭Server maintains 2 mappings: user id → socket & socket id → user‬
‭○‬ ‭Server maps user id to socket and socket id to user‬

‭●‬ ‭addUser(name, socket_id) ← server maps name to socket id and now you can get a‬
‭user’s socket!‬

‭●‬ ‭socketManager.getSocketFromUserID(id) ← get a user’s socket‬

‭Advanced CSS & Other Libraries‬
‭Tailwind‬‭:‬‭https://play.tailwindcss.com/‬
‭Slides with examples‬‭:‬
‭https://docs.google.com/presentation/d/1F_QJJjkFw9ZP9_mjTO88ENyxpk1BXC74jgyaHvLRT‬
‭LQ/edit#slide=id.g1ee5fc8e84d_0_112‬

‭CSS‬‭:‬

‭●‬ ‭CSS Combinators‬‭: specifies relationships between CSS‬‭selectors, such as HTML tags‬
‭(div, p, etc)‬

‭a.‬ ‭Descendant selector (space)‬
‭■‬ ‭Matches all elements that are descendants of the specified element‬

‭b.‬ ‭Child selector (>)‬
‭■‬ ‭Matches all elements that are direct childre of the specified element‬

‭c.‬ ‭Adjacent sibling selector (+)‬
‭■‬ ‭Selects a single element that is directly after another‬

‭d.‬ ‭General sibling selector (~)‬
‭■‬ ‭Selects all elements after another specific element‬

‭●‬ ‭Display Types‬‭: tells browser how to display an element‬‭and its child on page‬
‭a.‬ ‭display: grid‬

‭■‬ ‭Tells browser to display child elements in a 2-d layout‬
‭b.‬ ‭grid-auto-flow‬

‭■‬ ‭Row instructs browser to prioritize adding rows, columns vice versa‬
‭c.‬ ‭grid-template-rows/grid-template-columns‬

‭■‬ ‭Allows us to modify the width / height between rows / cols‬
‭d.‬ ‭display: none‬

https://play.tailwindcss.com/
https://docs.google.com/presentation/d/1F_QJJjkFw9ZP9_mjTO88ENyxpk1BXC74jgyaHvLRTLQ/edit#slide=id.g1ee5fc8e84d_0_112
https://docs.google.com/presentation/d/1F_QJJjkFw9ZP9_mjTO88ENyxpk1BXC74jgyaHvLRTLQ/edit#slide=id.g1ee5fc8e84d_0_112

‭2025 Theme: Branch Out‬

‭■‬ ‭Tells browser to remove an element from the document‬
‭e.‬ ‭visibility: hidden‬

‭■‬ ‭Tells browser to hide an element, but it still takes up space‬
‭●‬ ‭Content Overflow‬‭: allows us to tell browser how to‬‭handle child elements that may‬

‭exceed the size of parent element‬
‭a.‬ ‭visible (will see the element)‬
‭b.‬ ‭hidden (clips the content into the element)‬
‭c.‬ ‭scroll (display a scroll bar always in the overflow)‬
‭d.‬ ‭auto (display a scroll bar only if needed – if there is overflowing content)‬

‭●‬ ‭Animations:‬‭Give HTML elements some movement‬
‭a.‬ ‭Keyframes‬

‭■‬ ‭Describes the animation we’re creating, and what will happen at different‬
‭points of the animation (ex: opacity)‬

‭■‬ ‭@keyframes fadeIn { … }‬
‭b.‬ ‭Calling our animation‬

‭■‬ ‭Can reference the name to call the animation‬
‭c.‬ ‭Duration‬

‭■‬ ‭Tells the browser how long the animation should last‬
‭d.‬ ‭Delay‬

‭■‬ ‭Tells the browser a delay before the animation is executed‬
‭e.‬ ‭Timing functions‬

‭■‬ ‭ease (default) → slow start, fast middle, slow end‬
‭■‬ ‭ease-in → slow start‬
‭■‬ ‭ease-out → slow end‬
‭■‬ ‭ease-in-out → slow start & slow end‬
‭■‬ ‭Linear → uniform speed‬

‭TailwindCSS:‬
‭●‬ ‭Utility-first CSS framework that utilizes pre-made classes to make development quicker‬
‭●‬ ‭Low level; can create different components even with the same utility classes‬
‭●‬ ‭Tailwind reduces CSS bundle sizes to the absolute minimum‬

‭○‬ ‭Smaller CSS bundle sizes = faster load times‬
‭●‬ ‭Emphasizes responsive design‬
‭●‬

‭Games‬
‭●‬ ‭Complicated game logic and state‬
‭●‬ ‭Performance super important‬
‭●‬ ‭HTML5 Canvas is a good way to render animations on the front end‬

‭2025 Theme: Branch Out‬

‭○‬ ‭Origin is at top left, then increases‬
‭●‬ ‭Emit socket messages from both the client to the server and the server to the client‬
‭●‬ ‭Event listeners on the client allow the website to take in user input‬
‭●‬ ‭The game state is stored on the server, where the ground truth of the game should be‬

‭stored‬
‭○‬ ‭All game logic should be done on the server‬

‭●‬ ‭Upon a component unmount (event listener disconnect), or a client socket disconnect, we‬
‭should clean up the user from a game‬

‭Typescript - statically typed‬
‭Incorperate‬‭Typescript‬‭:‬‭https://www.sitepoint.com/how-to-migrate-a-react-app-to-typescript/‬

‭●‬ ‭Language built on top of Vanilla JS that enforces static typing‬
‭●‬ ‭Validates that you cod works at compile-time‬
‭●‬ ‭Save your life when debugging‬
‭●‬ ‭Javascript = dynamically typed‬

‭○‬ ‭Types are only associated with values, so a variable type can change during‬
‭execution‬

‭●‬ ‭In Typescript, you need to declare the type for the function so users know what type gets‬
‭passed‬

‭●‬ ‭Easily integratable with your projects‬
‭●‬ ‭Functions in Typescript are treated as a variable, so you can add them as a property‬

‭Static Typing Can Catch:‬
‭●‬ ‭Missing or unnecessary prop values‬
‭●‬ ‭Similarly named variables or functions‬
‭●‬ ‭Undefined & null value behavior‬
‭●‬ ‭Overloaded operators‬

‭RSC (React Server Components) and Next.js‬
‭●‬ ‭Serverless‬‭= way of running code so that code normally‬‭ran on server are bundled and‬

‭ran individually when called‬
‭○‬ ‭Server = living in house (need to manage your own load balancing, resource‬

‭allocation, etc)‬
‭○‬ ‭Serverless = living in hotel (cloud provider stores and runs your code for you)‬

‭Pros / Cons of serverless:‬

https://www.sitepoint.com/how-to-migrate-a-react-app-to-typescript/

‭2025 Theme: Branch Out‬

‭●‬ ‭P Scaling (auto provision of resources)‬
‭●‬ ‭P Lower costs (pay for what you can use)‬
‭●‬ ‭P Focus on development (indrastruvture management handles by provider)‬
‭●‬ ‭C Cold starts (latency with functions that are called for first time in a while)‬
‭●‬ ‭C Lack of global state (sockets won’t work out of box)‬

‭Next.js vs. React‬
‭●‬ ‭Full stack framework using React as the frontend framework of choice‬
‭●‬ ‭Built in support for routing, filesystem based routing, while React needs React Router‬
‭●‬ ‭React is a single page application (SPA) while Next is a multi-page application (MPA)‬
‭●‬ ‭Next optimizes your site out of the box‬
‭●‬ ‭Next contains Middleware capabilities‬
‭●‬ ‭Next pre-renders our HTML document on server‬

‭When to use Next.js‬
‭●‬ ‭Great option for full stack applications, such as‬

‭○‬ ‭Interact with database‬
‭○‬ ‭Authentication‬
‭○‬ ‭Dynamic (changing) data‬
‭○‬ ‭API layer (inward / outward facing)‬

‭Single Page Application (React)‬‭→ bundle of HTML and‬‭JS are downloaded by client‬
‭●‬ ‭Client then runs JS to render the app on client‬
‭●‬ ‭Downside: everything handled by browser (client) – must wait for entire JS bundle to‬

‭download, data fetching dependent on user connection speed‬

‭Server Side Rendering (Next.js)‬‭→ initial render of‬‭document is sent to client first; we can‬
‭display HTML without even running any JS‬

‭●‬ ‭From there, we wait until JS bundle is downloaded for our site to be interactive‬
‭●‬ ‭Servers are much closer to data & more consistent / reliable‬
‭●‬ ‭Clients can vary in performance (unpredictable), and when building apps with sensitive‬

‭data, cannot trust client‬

‭React Server Components (RSC)‬‭→ split our code into‬‭client and server components‬
‭●‬ ‭Split in the middle & let each handle their strengths‬
‭●‬ ‭Hybrid approach gives us an overall better user experience‬
‭●‬ ‭Client components sent first (visual feedback), server makes request to database and then‬

‭combines it with server components then sends to client → loading complete‬

‭2025 Theme: Branch Out‬

‭How to Code Good‬
‭●‬ ‭Use prettier (VSCode extension)‬

‭○‬ ‭Either everyone on team uses it, or everyone does not use it‬

‭Lag & Optimization:‬
‭●‬ ‭Minimize unnecessary & repetitive computations‬
‭●‬ ‭Bundle communication into packages‬

‭Games‬‭:‬
‭●‬ ‭Movement curves (acceleration, sustain, deceleration)‬
‭●‬ ‭Input buffers (some lag time for users to interact with game)‬
‭●‬ ‭Wall sliding (remove components of motion)‬

‭Documentation‬‭:‬
‭●‬ ‭Most important: API documentation, front end props‬

‭Debug‬‭:‬
‭●‬ ‭Different parts: mongo, node js, express api, src (server backend, client frontend)‬

‭○‬ ‭Where along the stream of info is the code coming from?‬
‭●‬ ‭Check the browser console (command + option + j)‬
‭●‬ ‭console.log things (from front end sent to backend)‬
‭●‬ ‭Make small changes then test app incrementally‬

‭○‬ ‭Keep functions short and modular‬

‭Git Hygiene‬‭:‬
‭●‬ ‭Always git pull‬
‭●‬ ‭Dangerous commands:‬

‭○‬ ‭git add .‬
‭○‬ ‭git push --force‬
‭○‬ ‭git reset --hard‬
‭○‬ ‭git commit --amend‬

‭Deployment‬
‭●‬ ‭Making your web app accessible to the world‬
‭●‬ ‭localhost:5173 → yourwebsite.com‬
‭●‬ ‭We’re using render to deploy‬

‭2025 Theme: Branch Out‬

‭●‬ ‭Slides:‬
‭https://docs.google.com/presentation/d/1jnk_IfpU-d1El0xM42FuOjR_S2eJtXinPBpIE3if‬
‭Vzo/edit‬

‭Last Lecture‬
‭●‬ ‭Full stack design‬

‭○‬ ‭Design with all layers of app in mind‬
‭○‬ ‭Front end, server side, database‬
‭○‬ ‭“What data do we need to store? What user wants”‬

‭●‬ ‭Feature by feature‬
‭○‬ ‭Design features independently‬
‭○‬ ‭Visual display of info about user‬

‭Your Website:‬
‭●‬ ‭Front end, back end, database (almost like a bridge connecting front and back)‬
‭●‬ ‭Good documentation and communication‬
‭●‬ ‭Divide the work‬
‭●‬ ‭Quality > quantity‬

‭Criteria‬‭:‬
‭●‬ ‭Functionality‬
‭●‬ ‭Usability‬
‭●‬ ‭Aesthetics‬
‭●‬ ‭Concept execution‬
‭●‬ ‭NO CRASHING (“we will be attacking your website seeing if it crashes)‬

‭Special Prizes:‬
‭●‬ ‭Unique concept‬
‭●‬ ‭Responsive UI design‬
‭●‬ ‭Innovative UI feature‬
‭●‬ ‭Innovative backend feature‬
‭●‬ ‭Webby award‬
‭●‬ ‭Futuristic UI design‬
‭●‬ ‭Best Social Impact‬

https://docs.google.com/presentation/d/1jnk_IfpU-d1El0xM42FuOjR_S2eJtXinPBpIE3ifVzo/edit
https://docs.google.com/presentation/d/1jnk_IfpU-d1El0xM42FuOjR_S2eJtXinPBpIE3ifVzo/edit

